Spritz: general relativistic magnetohydrodynamics with neutrinos

in collaboration with

Bruno Giacomazzo, Riccardo Ciolfi, Jay V. Kalinani, Lorenzo Sala, Edoardo Giangrandi, Beatrice Giudici, Lorenzo Ennoggi

and

TCAN⁺ collaboration

¹ Center for Computational Relativity and Gravitation (CCRG), RIT, Rochester, NY
* <u>cipo87@gmail.com</u>
* <u>https://compact-binaries.org/</u>

1st milestone in new GRMHD + neutrinos code development

Cipolletta et al (2020), Classical and Quantum Gravity 37.13 (2020): 135010

- STAGGERED Avec: Accurate evolution of magnetic field
- Reconstruction orders: minmod, PPM, WENO-z <u>Cipolletta et al (2021), under review</u>
- **EQS Immi thorn:** Allows implementation of "general" EOS
- **Extensive testing:** 1D, 2D, 3D
- 2nd- order convergence
 - BALASARA 1 ShockTube
 - PPM + HLLE
 - Postshock oscillations avoided

Tabulated EOSs and neutrino leakage <u>Cipolletta et al (2021), under review</u>

- Tabulated EOS: https://compose.obspm.fr/home/ $\rightarrow P = P(\rho, T, Y_e)$
- Need to select EOS's "slices" for ID: const. T or S slices
- Code for producing and reading ID: Lorene https://lorene.obspm.fr/
- Code for setting Beta equilibrium
- C2P which support "evolving" T and S: PalenzuelalD Siegel et al, ApJ (2018)
- Code for neutrino leakage: ZelmaniLeak Ott et al, PRD (2012)

ZelmaniLeak - Neutrino Leakage

- **1.** Dominant processes: Electron Capture, Positron Capture, Pair Annihilation, Plasmon Decay
- **2.** Optical Depth: Isotropic Neutrino Radiation $\rightarrow \tau(\mathbf{x})$
- 3. Neutrino Energy Balance
- 3.1. Diffusive Regime (Absorption) $\rho > 10^{12} \text{g cm}^{-3}$ Sources of opacity 3.2. Free-streaming Regime (Emission) $\rho < 10^{12} \text{g cm}^{-3}$ 1. + bremss. $\} \Rightarrow Q_{\nu_i}^{\text{ef}}, R_{\nu_i}^{\text{ef}} \Rightarrow L_{\nu_i}$
- 3.3. Neutrino Re-absorption Heating: $Q_{\{\nu_e,\bar{\nu}_e\}}^{\text{heat}}$ that modifies $Q_{\nu_i}^{\text{ef}}, R_{\nu_i}^{\text{ef}}$
- 4. Neutrino Pressure Handling: $\rho > 10^{12} \frac{g}{cm^3} \Rightarrow P_{\nu}$ added to $T^{\alpha\beta}$ source terms
- 5. Ray-by-ray approach: $(x, y, z) \rightarrow (r, \theta, \phi) \rightarrow (x, y, z)$
- 6. Operator-split: Y_e and ϵ should be updated at each time-step via P2C

TOV Tests

ID	GRMHD	symmmetry	Beta-equilibrium	T-Evolution	Max B-Field	Neutrino-Leakage
00	Spritz	Octant	T-slice	X	-	Disabled
01	Spritz	Full 3D	S-slice	V	-	Disabled
02	GRHydro	Octant	S-slice	V	-	Disabled
03	Spritz	Octant	S-slice	V	-	Disabled
04	Spritz	Full 3D	S-slice	V	-	Enabled
05	GRHydro	Octant	S-slice	V	-	Enabled
06	Spritz	Octant	S-slice	V	-	Enabled
07	GRHydro	Octant	T-slice	V	-	Disabled
08	Spritz	Octant	T-slice	V	-	Disabled
09	Spritz	Octant	T-slice	V after 2 ms	-	Disabled
10	GRHydro	Octant	T-slice	V	-	Enabled
11	Spritz	Octant	T-slice	V	-	Enabled
12	Spritz	Octant	T-slice	V after 2 ms	-	Enabled after t = 3 ms
13	Spritz	Full 3D	S-slice	V	10 ¹⁶ G	Disabled
14	Spritz	Full 3D	S-slice	V	10 ¹⁶ G	Enabled
15	Spritz	Full 3D	T-slice	V	10 ¹⁶ G	Disabled
16	Spritz	Full 3D	T-slice	V	10 ¹⁶ G	Enabled after t = 3 ms

<u>Cipolletta et al (2021), under review</u>

- LS220 EOS
- 5 refinement levels
- $dx_{min} = 0.12 \rightarrow 60 \text{ pts per r}_{NS}$ resolution of 180m for NS interior
- Constant S or T initial slice
- Consider or not the heating

Maximum Rest mass Density Maximum Temperature Maximum norm of B Luminosity of neutrinos

RESULTS – const S id with leakage

Maximum of T at NS center

RESULTS – const T id with leakage

Maximum of T at NS surface (!!!)

RESULTS – B norm max

Const S id

Lekage activation does not alter the maximum B-field evolution

10/13

RESULTS – neutrino Luminosity

_

Heating may considerably affect the neutrino luminosity observed

Heating effects need to be handled with care

Sprtiz code in the TCAN collaboration

Theory and Computational Network on Neutron Star Mergers

Goal: <u>long-term BNS simulations with:</u>

- Dynamical GR-MHD
- Nuclear and Neutrino Physics, EOS
- Neutrino/photon transport
- R-processes/nucleosynthesis

Take advantage of the strength of each code:

- absence of symmetry $\rightarrow CARTESIAN$ coordinates
- axial symmetry → SPHERICAL coordinates

Advancing Computational Methods to Understand the Dynamics of Ejections, Accretion, Winds and Jets in Neutron Star Mergers

Work in progress: Armengol-Lopez et al.

Hand-off from BNS simulation in Cartesian coordinates (**IGM**) to postmerger simulations in spherical coords (HARM3D)

Visit compact-binaries.org

12/13

PURE HYDRO BNS MERGER (the "Missing Link") + HANDOFF **SPRITZ**

 $t = 0 \ [M_{\odot}]$ ••

Around

HARM3D

PRELIMINARY TESTS FOR BNS WITH SLy4 EOS

30

40

10

 $x[\mathbf{km}]$

20

- SLy4 EOS
- 6 refinement levels •
- dx_{min} = 0.24 ~ 354 m
- Cold initial data

 10^{-10}

Max: 4.58e-03

Min: 1.00e-10

-40

-40 -30 -20 -10 0

t = 4.77e+00 ms

-40 -30 -20 -10 10 20 30 40 0 x[km]

t = 4.93e+00 ms

y[km]

y[km]

t = 5.51e+00 ms

t = 5.77e+00 ms

Images: courtesy of Lorenzo Ennoggi @UniMIB