CompOSE Stefan Typel

TECHNISCHE UNIVERSITÄT DARMSTADT

PHAROS WG1+WG2 Workshop

CompOSE2021 Online Repository for the Equation of State and Transport Properties of Neutron Stars

February 24 - 26, 2021

Institute of Space Sciences Barcelona (virtual)

Outline

- Introduction
- Main Features
- Website
- EoS Tables
- Data in EoS Files
- Handling of EoS Data
- Documentation
- Interaction with Users
- Future

Introduction

- tables of equations of state (EoS) for astrophysical applications
 - distributed over many places
 - central repository needed
 - coordinated effort of community

⇒ CompOSE = CompStar Online Supernovae Equations of State

- history
 - initial work within CompStar project (funded by ESF)
 - core team (Thomas Klähn, Micaela Oertel, Stefan Typel)
 - support team (David Blaschke, Tobias Fischer, Matthias Hempel, Daniel Zabłocki)
 - first status report: Rostock 2010
 - publication of first manual
 - arXiv:1307.5715 [astro-ph.SR], Phys. Part. Nucl. 46 (2015) no.4, 633-664
 - further presentations: Lyon 2014, Basel 2016, Trento 2017, Coimbra 2018
- many discussions about extensions but little progress recently (except details, additional EoS tables, development of web pages)

Main Features

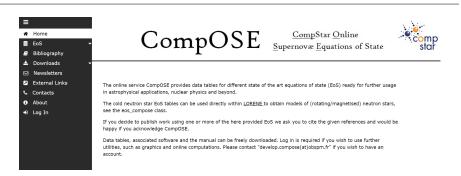
free-access website (compose.obspm.fr)

hosted at LUTH, Observatoire de Paris, Meudon, France

repository of EoS tables

- thermodynamic properties, chemical composition, microscopic quantities
- tabulation in temperature, baryon density, and hadronic charge fraction
- flexible data format

tools for handling of EoS data


- software for extraction, interpolation and calculation of additional quantities
- online generation of customized EoS tables (access restricted)
- different output formats

documentation

- manual and 'how-to' instructions
- bibliography of EoS publications
- links to related projects

Website I

compose.obspm.fr

support and development

- Micaela Oertel, Marco Mancini, Jean-Yves Giot, Thomas Klähn
- LUTH, Meudon, France

Website II

items

- EoS tables of different type
 - Cold Neutron Star EoS (38, 1-dim.)
 - Cold Matter EoS (6, 2-dim.)
 - Neutron Matter EoS (27, 2-dim.)
 - General Purpose EoS (85, 3-dim.)
- Bibliography
- Downloads
 - Software
 - Manual
- Newsletters
- External Links
- Contacts
- About
- Log In

EoS Tables I

TECHNISCHE UNIVERSITÄT DARMSTADT

- individual pages for EoS tables
- content
 - abstract
 - references
 - data sheet
 - data files
 - scheme of tabulation
 - mass-radius relation of neutron star (if available)
 - button for online computation

LS220wl (with low densities)

Abstract

Note that end the fail is during the fail of \$200 km starts of the second secon

novan	
Particles	ryan NR
Texa	1.05-01
Time	LANCOMP.
Tata	242
-	1.00=12
rit max	A Phonese
19.00	20
Yesis	3.09+02
V mark	Litter III
198	31

References

References to the original work: [IANP 1991] 3.10. Lettinger and P. D. Roughy, Nucl. Phys. A 335, 331 (1991) (2

Further reference

[0FNP_2012] H. Dettel, A. F. Fartina and J. Novak, Phys. Rev. C 85, 055804 (2012) 07

atz	ch	5
111	ĸ£	

doc.zig (contains all following files and data sheet) and control

815.77
855.73
sca.t

Compute

.

EoS Tables II

files with parameter grid

- ▶ temperature T (unit MeV) → eos.t
- ▶ baryon density n_b (unit fm⁻³) → eos.nb
- ▶ hadronic charge fraction Y_q (no unit) → eos.yq

explicit listing or recursive definition (linear/logarithmic)

files with EoS data

- thermodynamic properties $\rightarrow \texttt{eos.thermo}$
- chemical composition $\rightarrow eos.compo$ (optional)
- microscopic information $\rightarrow \texttt{eos.micro}$ (optional)

location of data points by parameter indices

- file with detailed information (data sheet) ightarrow eos.pdf
- collection of all files \rightarrow eos.zip

Data in EoS Files

thermodynamic quantities (eos.thermo)

- scaled pressure P/nb (unit MeV)
- entropy per baryon s/n_b (unit k_B)
- ▶ scaled chemical potentials $\mu_b/m_n 1$, μ_q/m_n , μ_l/m_n (no unit)
- ▶ scaled free energy and energy densities $f/(n_b m_n) 1$, $e/(n_b m_n) 1$ (no unit)
- additional quantities (optional)

chemical composition (eos.compo)

- thermodynamic phase (index)
- ▶ particle types (index) and density fractions ($Y_i = n_i/n_b$, no unit)
- average mass and charge number (A_{heavy}, Z_{heavy}) and density fraction (X_{heavy}) of heavy nuclei

microscopic quantities (eos.micro)

pairs of indices (defining particle type and quantity) and quantities

Handling of EoS Data I

software

- FORTRAN code, version 1.16, 2018/10/16 (compose.f90, composemodules.f90, out_to_json.f90, get_tables.f90, Makefile)
- modes of operation
 - 'file version': needs input files provided by the user
 - 'terminal version': simple interaction with user (default)
- output formats: ASCII and HDF5

input files

- from website: eos.t, eos.nb, eos.yq, eos.thermo, eos.compo, eos.micro
- provided by user: eos.parameters, eos.quantities (only for 'file version' of code, created automatically with 'terminal version')

output files

- table with customized EoS data: eos.table
- additional information: eos.report, eos.init
- input for neutron sar calculation: eos.beta (if available)

Handling of EoS Data II

web interface

- restricted access ⇒ registration required: send e-mail to develop.compose@obspm.fr
- generation of EoS tables online
- graphical representation of EoS data (realisation of merger with EOSDB website of Chikako Ishizuka)

LORENE library

- new class: eos_compose
- cold neutron-star EoS can be used as direct input for Nrotstar code
 - \Rightarrow properties of rotating neutron stars

Documentation

manual

- detailed information on file formats, tabulation scheme, interpolation, ...
- actual version: 2.00, 2018/01/26, 81 pages

'how-to' leaflet (planned)

- simple instructions on how to run the compose code
- examples for different EoS types

online bibliography

- links to original publications (89 entries)
- links to other EoS projects
 - to be updated

preparation of data sheets

generation of LTEXfile datasheet.tex with program eosform.cpp

Interaction with Users

submission of EoS data

- contact CompOSE core team by sending e-mail to develop.compose@obspm.fr
- details on preparation of files and transmission of data will be clarified

extraction of EoS data

- direct download of files from CompOSE website
- use of web interface (restricted access)

newsletter (hardly ever used so far)

- mailing list compose.info
- for subscription send email with subject 'Subscribe' to develop.compose@obspm.fr

registration

- contact CompOSE core team by sending e-mail to develop.compose@obspm.fr
- full access to all services with password

Future I

modification/extension of EoS tables

- change of tabulated data?
- dependence on other variables (e.g. magnetic field) → more than three dimensions?
- choice of other primary variables, e.g.,
 - ▶ temperature → entropy
 - baryon density \rightarrow baryon chemical potential
- additional data (e.g. transport properties)
 - selection
 - representation
 - dependence on other variables

different representation of data

- polynomials or other functional forms?
- development of specific subroutines for application, independent of compose code

Future II

extension/modification of compose program

- choice of output units (nuclear vs. astrophysical)
- extraction of 'isolines'
 - (e.g. constant entropy per baryon, constant lepton chemical potential)
- conversion of tables (e.g. change of primary variables)
- construction of phase transitions (local vs. global thermodynamic consistency)
- improvement of interpolation
 - dependence on quantities (some are rapidly changing in certain regions)
 - treatment of multi-dimensional cases

extension of data base

- more EoS tables
- other EoS types for other applications

more suggestions?

Thank you for your attention!

February 24, 2021 | PHAROS WG1+WG2 Workshop | Stefan Typel | 16