Inderstanding the Progenitors and Engine of Gamma-Ray Bursts: a multi-decade multi-diagnostic/messenger Odyssey

Chris Fryer (L

GRBs – The Odessy Begins

- 1967: Discovery – Vela Satellites designed to ensure testban treaty
- 1972-1991: Golden Age for Theorists - no constraints and a world of proposals

Table 1

Nemiroff 1994

The first gamma-Ray burst model Appeared before The Vela results Were published!

By 1992, over 100 models Existed!

Despite this Number, the Currently favored Model is not on This list!

#	Author	Year Pub	Reference	Main Body	2nd Body	Place	Description
1.	Colgate	1968	CJPhys, 46, S476	ST		COS	SN shocks stellar surface in distant galaxy
2.	Colgate Studius et al	1974	ApJ, 187, 333	ST		DEV	Type II SN shock brem, inv Comp scat at stellar surface
3.	Stecker et al.	1973	Nature, 245, FS70 Nature, 245, PS70	WD		DISK	Superflare from nearby WD
5.	Harwit et al.	1973	ApJ, 186, L37	NS	COM	DISK	Relic comet perturbed to collide with old galactic NS
6.	Lamb et al.	1973	Nature, 246, PS52	WD	ST	DISK	Accretion onto WD from flare in companion
7.	Lamb et al.	1973	Nature, 246, PS52	NS	ST	DISK	Accretion onto NS from flare in companion
8.	Lamb et al.	1973	Nature, 246, PS52	BH	ST	DISK	Accretion onto BH from flare in companion
9.	Zwicky	1974	Ap & SS, 28, 111	NS		HALO	NS chunk contained by external pressure escapes, explodes
10.	Grindlay et al.	1974	ApJ, 187, L93	DG		SOL	Relativistic iron dust grain up-scatters solar radiation
11.	Brecher et al.	1974	ApJ, 187, L97	ST		DISK	Directed stellar flare on nearby star
12.	Schlovsku Soblovsku	1974	SovAstron, 18, 390 SovAstron, 18, 390	MS	COM	DISK	Comet from system's cloud strikes WD Comet from system's cloud strikes NS
14	Bisnovatvi- et al	1975	An & SS 35 23	ST	COM	COS	Absorption of neutrino emission from SN in stellar envelope
15.	Bisnovatvi- et al.	1975	Ap & SS, 35, 23	ST	SN	COS	Thermal emission when small star heated by SN shock wave
16.	Bisnovatyi- et al.	1975	Ap & SS, 35, 23	NS		COS	Ejected matter from NS explodes
17.	Pacini et al.	1974	Nature, 251, 399	NS		DISK	NS crustal starquake glitch; should time coincide with GRB
18.	Narlikar et al.	1974	Nature, 251, 590	WH		COS	White hole emits spectrum that softens with time
19.	Tsygan	1975	A&A, 44, 21	NS		HALO	NS corequake excites vibrations, changing E & B fields
20.	Chanmugam	1974	ApJ, 193, L75	WD	am	DISK	Convection inside WD with high B field produces flare
21.	Prilutski et al.	1975	Ap & SS, 34, 395	AGN	ST	COS	Collapse of supermassive body in nucleus of active galaxy
22.	Piran at al	1975	Ap & 55, 55, 521 Natura 256, 112	PU		DISK	Inv Comp scat doop in argosphere of fast rotating accreting BH
24.	Fabian et al.	1976	Ap & SS, 42, 77	NS		DISK	NS crustquake shocks NS surface
25.	Chanmugam	1976	Ap & SS, 42, 83	WD		DISK	Magnetic WD suffers MHD instabilities, flares
26.	Mullan	1976	ApJ, 208, 199	WD		DISK	Thermal radiation from flare near magnetic WD
27.	Woosley et al.	1976	Nature, 263, 101	NS		DISK	Carbon detonation from accreted matter onto NS
28.	Lamb et al.	1977	ApJ, 217, 197	NS		DISK	Mag grating of accret disk around NS causes sudden accretion
29.	Piran et al.	1977	ApJ, 214, 268	BH		DISK	Instability in accretion onto rapidly rotating BH
30.	Dasgupta	1979	Ap & 88, 63, 517 Afra 87 224	WD		DISK	Charged intergal rel dust grain enters sol sys, breaks up WD surface nuclear burst causes chromospheric flares
32.	Tsygan	1980	A&A. 87, 224	NS		DISK	NS surface nuclear burst causes chromospheric flares
33.	Ramaty et al.	1981	Ap & SS, 75, 193	NS		DISK	NS vibrations heat atm to pair produce, annihilate, synch cool
34.	Newman et al.	1980	ApJ, 242, 319	NS	AST	DISK	Asteroid from interstellar medium hits NS
35.	Ramaty et al.	1980	Nature, 287, 122	NS		HALO	NS core quake caused by phase transition, vibrations
36.	Howard et al.	1981	ApJ, 249, 302	NS	AST	DISK	Asteroid hits NS, B-field confines mass, creates high temp
37.	Colgete et al.	1981	Ap & SS, 77, 469 Ap 1, 248, 771	NS NS	AST	DISK	Astaroid hits NS, tidally discupts, heated avaalled slong R lines
39.	van Buren	1981	ApJ, 249, 297	NS	AST	DISK	Asteroid enters NS B field, dragged to surface collision
40.	Kuznetsov	1982	CosRes, 20, 72	MG		SOL	Magnetic reconnection at heliopause
41.	Katz	1982	ApJ, 260, 371	NS		DISK	NS flares from pair plasma confined in NS magnetosphere
42.	Woosley et al.	1982	ApJ, 258, 716	NS		DISK	Magnetic reconnection after NS surface He flash
43.	Fryxell et al.	1982	ApJ, 258, 733	NS		DISK	He fusion runaway on NS B-pole helium lake
44.	Hameury et al. Mitrofency et al.	1982	A&A, 111, 242 MNRAS, 200, 1022	NS		DISK	e- capture triggers H hash triggers He hash on NS surface B induced cycle res in red absorp giving rel e-s, inv C scat
46.	Fenimore et al.	1982	Nature, 297, 665	NS		DISK	BB X-rays inv Comp scat by hotter overlying plasma
47.	Lipunov et al.	1982	Ap & SS, 85, 459	NS	ISM	DISK	ISM matter accum at NS magnetopause then suddenly accretes
48.	Baan	1982	ApJ, 261, L71	WD		HALO	Nonexplosive collapse of WD into rotating, cooling NS
49.	Ventura et al.	1983	Nature, 301, 491	NS	ST	DISK	NS accretion from low mass binary companion
50.	Bisnovatyi- et al.	1983	Ap & SS, 89, 447	NS		DISK	Neutron rich elements to NS surface with quake, undergo fission
51.	Ellison et al.	1984	A&A 128 102	NS		HALO	NS corecuske + uneven heating yield SCR pulsations
53.	Hameury et al.	1983	A&A, 128, 369	NS		DISK	B field contains matter on NS cap allowing fusion
54.	Bonazzola et al.	1984	A&A, 136, 89	NS		DISK	NS surface nuc explosion causes small scale B reconnection
55.	Michel	1985	ApJ, 290, 721	NS		DISK	Remnant disk ionization instability causes sudden accretion
56.	Liang	1984	ApJ, 283, L21	NS		DISK	Resonant EM absorp during magnetic flare gives hot sync e-s
57.	Liang et al.	1984	Nature, 310, 121	NS		DISK	NS magnetic fields get twisted, recombine, create flare
58.	Enstein	1984	Ap & 55, 105, 245 Ap 1, 261, 822	NS		DISK	Accretion instability between NS and disk
60.	Schlovskii et al.	1985	MNRAS, 212, 545	NS		HALO	Old NS in Galactic halo undergoes starquake
61.	Tsygan	1984	Ap & SS, 106, 199	NS		DISK	Weak B field NS spherically accretes, Comptonizes X-rays
62.	Usov	1984	Ap & SS, 107, 191	NS		DISK	NS flares result of magnetic convective-oscillation instability
63.	Hameury et al.	1985	ApJ, 293, 56	NS		DISK	High Landau e-s beamed along B lines in cold atm of NS
64.	Rappaport et al.	1985	Nature, 314, 242	NS		DISK	NS + low mass stellar companion gives GRB + optical flash
66	Tremame et al.	1986	ApJ, 301, 155	NS	COM	DISK	NS tides disrupt comet, debris hits NS next pass
67	Sturrock	1986	Ap & 55, 120, 27 Nature 321 47	NS		DISK	Representation of NS accelerates are along R-field
68.	Paczynski	1986	ApJ, 308, L43	NS		COS	Cosmo GRBs: rel e- e+ opt thk plasma outflow indicated
69.	Bisnovatyi- et al	1986	SovAstron, 30, 582	NS		DISK	Chain fission of superheavy nuclei below NS surface during SN
70.	Alcock et al.	1986	PRL, 57, 2088	SS	SS	DISK	SN ejects strange mat lump craters rotating SS companion
71.	Vahia et al.	1988	A&A, 207, 55	ST		DISK	Magnetically active stellar system gives stellar flare
72.	Babul et al.	1987	ApJ, 316, L49	CS	COM	COS	GRB result of energy released from cusp of cosmic string
74.	McBreen et al	1988	Nature, 332, 234	GAL	AGN	COS	G-wave bkgrd makes BL Lac wiggle across galaxy lens caustic

75.	Curtis	1988	ApJ, 327, L81	WD		COS	WD collapses, burns to form new class of stable particles
76.	Melia	1988	ApJ, 335, 965	NS		DISK	Be/X-ray binary sys evolves to NS accretion GRB with recurrence
77.	Ruderman et al.	1988	ApJ, 335, 306	NS		DISK	e+ e- cascades by aligned pulsar outer-mag-sphere reignition
78.	Paczynski	1988	ApJ, 335, 525	CS		COS	Energy released from cusp of cosmic string (revised)
79.	Murikami et al.	1988	Nature, 335, 234	NS		DISK	Absorption features suggest separate colder region near NS
80.	Melia	1988	Nature, 336, 658	NS		DISK	NS + accretion disk reflection explains GRB spectra
81.	Blaes et al.	1989	ApJ, 343, 839	NS		DISK	NS seismic waves couple to magnetospheric Alfen waves
82.	Trofimenko et al.	1989	Ap & SS, 152, 105	WH		COS	Kerr-Newman white holes
83.	Sturrock et al.	1989	ApJ, 346, 950	NS		DISK	NS E-field accelerates electrons which then pair cascade
84.	Fenimore et al.	1988	ApJ, 335, L71	NS		DISK	Narrow absorption features indicate small cold area on NS
85.	Rodrigues	1989	AJ, 98, 2280	WD	WD	DISK	Binary member loses part of crust, through L1, hits primary
86.	Pineault et al.	1989	ApJ, 347, 1141	NS	COM	DISK	Fast NS wanders though Oort clouds, fast WD bursts only optical
87.	Melia et al.	1989	ApJ, 346, 378	NS		DISK	Episodic electrostatic accel and Comp scat from rot high-B NS
88.	Trofimenko	1989	Ap & SS, 159, 301	WH		COS	Different types of white, "grey" holes can emit GRBs
89.	Eichler et al.	1989	Nature, 340, 126	NS	NS	COS	NS - NS binary members collide, coalesce
90.	Wang et al.	1989	PRL, 63, 1550	NS		DISK	Cyclo res & Raman scat fits 20, 40 keV dips, magnetized NS
91.	Alexander et al.	1989	ApJ, 344, L1	NS		DISK	QED mag resonant opacity in NS atmosphere
92.	Melia	1990	ApJ, 351, 601	NS		DISK	NS magnetospheric plasma oscillations
93.	Ho et al.	1990	ApJ, 348, L25	NS		DISK	Beaming of radiation necessary from magnetized neutron stars
94.	Mitrofanov et al.	1990	Ap & SS, 165, 137	NS	COM	DISK	Interstellar comets pass through dead pulsar's magnetosphere
95.	Dermer	1990	ApJ, 360, 197	NS		DISK	Compton scattering in strong NS magnetic field
96.	Blaes et al.	1990	ApJ, 363, 612	NS	ISM	DISK	Old NS accretes from ISM, surface goes nuclear
97.	Paczynski	1990	ApJ, 363, 218	NS	NS	COS	NS-NS collision causes neutrino collisions, drives super-Ed wind
98.	Zdziarski et al.	1991	ApJ, 366, 343	\mathbf{RE}	MBR	COS	Scattering of microwave background photons by rel e-s
99.	Pineault	1990	Nature, 345, 233	NS	COM	DISK	Young NS drifts through its own Oort cloud
100.	Trofimenko et al.	1991	Ap & SS, 178, 217	WH		HALO	White hole supernova gave simultaneous burst of g-waves from 1987
101.	Melia et al.	1991	ApJ, 373, 198	NS		DISK	NS B-field undergoes resistive tearing, accelerates plasma
102.	Holcomb et al.	1991	ApJ, 378, 682	NS		DISK	Alfen waves in non-uniform NS atmosphere accelerate particles
103.	Haensel et al.	1991	ApJ, 375, 209	SS	SS	COS	Strange stars emit binding energy in grav rad and collide
104.	Blaes et al.	1991	ApJ, 381, 210	NS	ISM	DISK	Slow interstellar accretion onto NS, e- capture starquakes result
105.	Frank et al.	1992	ApJ, 385, L45	NS		DISK	Low mass X-ray binary evolve into GRB sites
106.	Woosley et al.	1992	ApJ, 391, 228	NS		HALO	Accreting WD collapsed to NS
107.	Dar et al.	1992	ApJ, 388, 164	WD		COS	WD accretes to form naked NS, GRB, cosmic rays
108.	Hanami	1992	ApJ, 389, L71	NS	PLAN	COS	NS - planet magnetospheric interaction unstable
109.	Meszaros et al.	1992	ApJ, 397, 570	NS	NS	COS	NS - NS collision produces anisotropic fireball
110.	Carter	1992	ApJ, 391, L67	BH	ST	COS	Normal stars tidally disrupted by galactic nucleus BH
111.	Usov	1992	Nature, 357, 472	NS		COS	WD collapses to form NS, B-field brakes NS rotation instantly
112.	Narayan et al.	1992	ApJ, 395, L83	NS	NS	COS	NS - NS merger gives optically thick fireball
113.	Narayan et al.	1992	ApJ, 395, L83	BH	NS	COS	BH - NS merger gives optically thick fireball
114.	Brainerd	1992	ApJ, 394, L33	AGN	JET	COS	Synchrotron emission from AGN jets
115.	Meszaros et al.	1992	MNRAS, 257, 29P	BH	NS	COS	BH-NS have neutrinos collide to gammas in clean fireball
116.	Meszaros et al.	1992	MNRAS, 257, 29P	NS	NS	COS	NS-NS have neutrinos collide to gammas in clean fireball
117.	Cline et al.	1992	ApJ, 401, L57	BH		DISK	Primordial BHs evaporating could account for short hard GRBs
118.	Rees et al.	1992	MNRAS, 258, 41P	NS	ISM	COS	Relativistic fireball reconverted to radiation when hits ISM

With many detections, CGRO (BATSE) places constraints on localization (isotropic), duration and energy.

BeppoSAX (γ-ray plus X-ray) localizes the bursts and optical/radio measure the distance: The bursts are extragalactic (10⁵¹erg explosions)

Variability (ms) and energetics (10^{51} erg) push for compact remnant engines (NS or BH). Accretion disk models predict different duration bursts based on progenitor and these differences can be used to make predictions about the different population differences: host galaxies, spatial distributions, etc.

Hyperaccreting Black Holes

GRB Durations with the Accretion Disk Paradigm

If the accretion disk forms in a merger, the angular momentum dictates the extent and, hence, duration of the disk:

$$T_{\rm disk} = (2\pi j^3) / (G^2 M_{\rm rem}^2 \alpha) = 4(j/10^{17} {\rm cm}^2 {\rm s}^{-1})^3 (3M_{\odot}/M_{\rm rem})^2 (0.01/\alpha) s$$

If the accretion disk is fed by a star, the duration is set by the time the star feeds the disk (e.g.):

$$T_{\rm free-fall} = \pi r_{\rm star}^{3/2} / (8GM_{\rm star})^{1/2}$$

$$\approx 35 \, s (r_{\rm star} / 10^{10} \, {\rm cm})^{3/2} (8 \, M_{\odot} / M_{\rm star})^{1/2}$$

Short Bursts are from compact mergers, long bursts are from massive stars or He-star/WD mergers.

By differentiating 💈 progenitors, the accretion disk models make predictions for burst distributions.

Distribution of neutron star mergers (left) and gas (right) at high (z=2-3.5, top) and low (z=0-0.2, bottom): Wiggins et al. 2018

If NS/NS and BH/NS mergers produce short-duration bursts (predicted by accretion disk models), there should be an offset of sGRBs with respect to their host galaxies. Long GRBs should be concentrated in star forming regionsl

These trends were predicted in 1999 (Bloom et al. 1999, Fryer et al. 1999) and evidence continued to grow (e.g. Fung et al. 2015)

In the Gravitational Wave Era

- With the first GW detection of a NS/NS merger, we've entered a new era, with direct evidence of the merger.
- Concurrent EM observations tied to r-process nucleosynthetic yields and GRBs.

Mergers eject material dynamically (tidal disruption) and in the late-time disk accretion. Metzger and **Berger** (2012) argued the lanthanide rich (heavy r-process) would produce a red component while the latetime ejecta produces a blue component. With detailed models, the emission can set the viewing angle.

Wavelength [microns]

To prove a GRB, we need proof of a strong jet!

- Subsequent radio observations are suggestive of a strong shock.
- GW170817 is probably a real GRB.

Taking advantage of the latest observations requires much better modeling and more physics!

Merger ejecta

- Detailed, MHD simulations with good neutrino transport
- Dense nuclear matter and neutrino physics
- Nuclear reaction rates (Lippuner talk)

- Emission Models
- Detailed opacities (perhaps NLTE)
- Detailed transport
- Implementation of opacities

Light curve modeling

- The gamma-rays and afterglow (e.g. X-ray, radio) probe properties of the GRB jet.
- The UV/optical and infra-red observations of GW170817 are believed to probe the ejecta.
- These light-curves depend upon a wide range of physics: exact nuclear yields (depend on radiation-hydrodynamics, magnetic fields, nuclear physics), additional energy sources (pulsar, accretion), opacities and opacity implementation, transport

Opacities can also make a difference: e.g. how do we include the correlation between bound electrons in an atom

We have a lot of work to get accurate ejecta properties from the late-time ejecta.

- Current disk • models use a range of transport methods from free-streaming to Monte-Carlo (Miller et al. 2018). The electron fraction of the ejecta can vary dramatically upon this transport.
- But it also depends on dense nuclear matter and neutrino physics.

Many diagnostics have contributed to our understanding of GRBs.

- Gamma-rays provided durations (within the AD paradigm, NS mergers produce short bursts and massive stars and larger mergers produce long bursts), rough spatial distributions
- X-ray afterglows pinpointed the bursts, allowing optical follow-up to get distances.
- Radio confirmed distances, later provided distributions to show the extended nature of short bursts

- GW170817: proof of merger and compact remnant properties.
 Required Gamma-rays, X-ray, radio to prove the GRB.
- UVOIR probes the ejecta properties, rprocess and nuclear physics
- To really take advantage of the data, we have a lot of physics to do!