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RESEARCH QUESTIONS FOR A NEW DECADE

EXAMPLES FROM THE 2015 AUSTRALIAN
DECADAL SURVEY:

Direct, indirect, collider

» What is the nature of Dark Matter and
Dark Energy? < Optical and IR supernovae, GW standard sirens?

» How do galaxies form and evolve over Optical/IR/X-ray galaxy surveys (resolved/IFU),
cosmological simulations with (often empirical)

sub-grid models tuned to these observations

cosmic time? -

» How are elements produced by stars
and recycled through galaxies?

Metallicity/optical spectra abundances as
oroxy for enrichment

| INTEGRAL HAS MADE SIGNIFICANT
* Whatiis the nature of m{ CONTRIBUTIONS TOWARD PROVIDING SOME |
at extreme densities? ] ANSWERS T0 EACH OF THESE QUESTIONS, IN ' non-thermal radio
PARTICULAR THROUGH THE STUDY OF
GAMMA RAY LINES
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26Al rotates with the galaxy, but faster
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Catching nucleosynthesis in the act,
and how gas is dispersed by thermal
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Explaining the faster rotation wrt CO/
stars is challenging...

Iron in superbubbles? (Krause+)
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60Fe in lunar material has been used to
infer the last time a SN occurred close
to Earth (several Myr ago,
Fimiani+2016)
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CCSNe produce 44Ti at high entropy
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event rate from gamma rays can't
explain 44Ca/5¢Fe abundance in pre-
solar grains
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SNe la are used as standardisable
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SN2014J: First unambiguous proof that
56Ni decay chain powers the optical SN LC

Around 10% of 56Ni on surface (0.03-0.09
Msun out of ~0.6 Msun)

Positrons escape?!
Optically was a fairly normal looking SNe

la, but interpretations of the gamma-ray
emission are... less normal...

The Ring (Diehl+2014)

line ofl
sight ¥ bulk of

the ejecta

The Blob (Isern+2016)

= axis of

| symmetry

The Plume
(Isern+2016)

bulk of
the ejecta

to observer I
1
l
1

inner *Ni
(opt. thick)

*°Ni belt
(opt. thin) | <5000 kms™

The dream: a large sample of SNe la detected
promptly in gamma-ray from which statistically
significant conclusions can be drawn and from
which explosion models can be tested
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compact objects or exotic phenomena such as
Dark Matter

> These problems must be tackled
simultaneously
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> Distribution of annihilating positrons
has changed subtly over the years, but
remains different than one would
naively expect (positron sources that
can be accounted for e.g. 26Al
concentrate in disk

> Distribution is a model - caution:
different analysis may yield very
different results! (T. Ensslin’s talk)

» Two possibilities:

» Positrons annihilate close to their
sources (annihilation distribution =
source distribution)

» Positrons propagate over kpc
distances, and all bets are off.
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Where are the positrons coming
from?
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> After SN2014J was detected in gamma-
rays, we know that similar results are
achievable with future SNe

» Future MeV gamma-ray detectors with
more sensitivity will enable
measurement of more gamma-ray lines

» e.g. measurement of 48Cr decay chain
may distinguish between SNe la
explosion scenarios, and are important

for SN cosmology .Q‘.\

» 22Na from novae - constraints on novae .

dasS a pOSitFOﬂ source

> We are looking beyond the Milky Way:
Globular Clusters, dSph galaxies - talk

» CR excitation/de-excitation lines... to T. Siegert and |

» Stellar flares...
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