Accreted highly magnetized neutron stars: recent progress

Alexander Lutovinov

S.Tsygankov, S.Molkov A.Mushtukov, V.Suleimanov A.Shtykovskiy, J.Poutanen

Current observational situation

Observatories and instruments in orbit: Chandra, XMM-Newton, Swift, INTEGRAL, Fermi/GBM, NuSTAR, NICER, MAXI

Timing capabilities: from ~10⁻⁵ to 10⁸ sec

Spectral ranges: ~0.5 – 200 keV

Luminosities: from 10³² to 10⁴⁰ erg/s

High sensitity and flexibility (regular, TOO, monitoring)

Swift/XRT monitoring campaign: more than dozen sources, total exposure > 1 Msec, hundreds observations

Propeller effect

Propeller effect

Accretion from the cold disk

Long period pulsars

Highly magnetized neutron star in very low states

Motivations and aims

Insights into the problem of the accretion on to **magnetized** neutron star at very low mass accretion rates

Study cooling of NSs

VFXTs LMXBs Very weak MF

Wijnands et al. 2013

Motivations and aims

Insights into the problem of the accretion on to **magnetized** neutron star at very low mass accretion rates

Cooling of the NSs with magnetic field

BeXRB systems (snapshot obs)

Source name	$\begin{array}{c} \text{Pulse period} \\ \text{(s)} \end{array}$	Orbital period (d)	$\frac{\rm Distance}{\rm (kpc)}$	$\begin{array}{c} {\rm Cyclotron\ line}\\ {\rm (keV)} \end{array}$	Optical companion
4U0115+63	3.6	24.3^{1}	7.0^{2}	11.5^{3}	$B0.2Ve^2$
V 0332+53	4.375	34.25^4	7.0^{5}	28^{6}	$O8-9Ve^5$
MXB 0656-072	160.4	101.2^{7}	3.9^{8}	36^{9}	$O9.7 Ve^{10}$
4U0728 - 25	103	34.5^{11}	6.1^{12}	2012	$O8-9Ve^{12}$
RX J0812.4-3114	31.9	81.313	9.2^{14}		$B0.5V-IIIe^{14}$
GS0834 - 430	12.3	105.8^{15}	5.0^{16}		B0–2 V–III e^{16}
GRO J1008-57	93.8	249.5^{17}	5.8^{18}	88 ¹⁹ , 75.5 ²⁰	$B0e^{21}$
2S1417 - 624	17.6	42.1^{22}	$(1.4 - 11.1)^{23}$		B1 Ve^{23}
$2S1553{-}542$	9.3	30.6^{24}	$20^{25,26}$	23.5^{25}	1997 (1997) 1997 - 1997 (1997)
Swift J1626.6-5156	15.377	132.9^{27}	10^{28}	10^{29}	$B0Ve^{28}$
GS1843+00	29.5	<u></u>	$(10-15)^{30}$	20^{31}	$B0-B2IV-Ve^{30}$
XTE J1946+274	15.8	169.2^{32}	$(8-10)^{33}$	36^{34}	B0–B1 IV–Ve ³³
KS 1947+300	18.8	40.4^{35}	$10^{36,37}$	12.5^{38}	$B0Ve^{36}$
SAX J2103.5+4545	351	12.7^{39}	6.5^{40}		$B0Ve^{40}$
Cep X-4	66.3	21^{41}	3.8^{42}	30^{43}	$B1V-B2Ve^{42}$
SAX J2239.3+6116	1247	262^{44}	4.4^{44}		$(B0-2 V-IIIe)^{44}$

Special program of observations with Chandra Also: using available XMM and XRT data Long term history based on Swift/BAT and ASM/RXTE data

Tsygankov et al., 2017c

Spectra (I)

Spectra (II)

Observational conclusions

The whole sample of sources can be roughly divided into two distinct groups:

(i) relatively bright objects with a luminosity around 10³⁴ erg s⁻¹ and (hard) power-law spectra
(4U0728-25, GROJ1008-57, SwiftJ1626.6-5156, XTEJ1946+274, KS1947+300, several possible candidates)
X-ray pulsations were detected from five objects in group (i) with quite a large pulse fraction of 50–70 per cent.

(ii) fainter ones showing thermal spectra (4U0115+63, V0332+53, MXB0656-072, RXJ0812.4-3114)

BUT! There is no correlation between the emission temperature and time after the last outburst, i.e. we don't' see cooling directly.

Emission in the very low state can be originated and contaminated by different factors

 Leakage of matter through the centrifugal barrier

$$T_{\rm keV}(r = R_{\rm m}) \simeq 0.03 \, B_{12}^{-3/7} L_{37}^{13/28}.$$

• Thermal emission from the cooling NS

• Coronal activity of the companion star

Origin of the very low emission of NSs

- Thermal emission from the cooling NS:

The matter accumulated during outbursts compresses the original NS crust and enriches it with low-Z elements.

It leads to non-equilibrium reactions (electron captures, neutron emissions, pycnonuclear reactions).

Most of this heat is conducted inwards to the core, but a small part is radiated from the NS surface as thermal photons

"Deep crustal heating" model Brown et al., 1998

$$L_q \approx 6 \times 10^{32} \text{ ergs s}^{-1} (\langle \dot{M} \rangle / 10^{-11} M_{\odot} \text{ yr}^{-1}),$$
 (5)

Rutledge et al., 2007

Source	$\frac{\text{Period}^a}{(s)}$	$L_{\rm prop}(R)^b$ (10 ³³ erg s ⁻¹)	$\langle \dot{M} \rangle^c$ $(10^{-10} \text{ M}_{\odot} \text{ yr}^{-1})$	$\frac{L_{q}^{d}}{(10^{33} \text{ erg s}^{-1})}$	$\frac{L_{\rm bb}e}{(10^{33} {\rm ~erg~s^{-1}})}$	$\frac{L_{\rm pl}^{f}}{(10^{33} {\rm ~erg~s^{-1}})}$
	()	(0 /	(0, /	(0)	10.07	10.20
4U 0115+63	1.000	174	0.7	4.3	$0.59^{+0.07}_{-0.06}$	$1.14^{+0.20}_{-0.15}$
V 0332+53	-	991	1.0	5.5	$0.26^{+0.07}_{-0.06}$	$0.54_{-0.16}^{+0.28}$
V 0332+53 (XMM)	—	991	1.0	5.5	$0.34\substack{+0.04\\-0.04}$	$0.59^{+0.09}_{-0.08}$
MXB 0656-072	- <u></u>	0.3	0.2	1.3	$3.80^{+0.27}_{-0.25}$	$5.62^{+0.40}_{-0.38}$
4U 0728–25 (XRT aver)	100	g	0.2	1.3	$7.91^{+0.57}_{-0.36}$	$11.2^{+0.5}_{-0.7}$
RX J0812.4-3114	1.000	g	0.4	2.2	$1.60\substack{+0.82\\-0.62}$	$2.54^{+1.58}_{-1.05}$
GS 0834-430	—	g	0.3	1.9	$0.27\substack{+0.29\\-0.12}$	$0.37\substack{+0.27\\-0.16}$
GRO J1008-57		5.5	1.0	5.6	$66.8^{+1.6}_{-1.5}$	$94.3^{+2.2}_{-2.1}$
2S 1417-624		\boldsymbol{g}	0.3	2.1	$2.01_{-0.38}^{+0.46}$	$2.66_{-0.40}^{+0.54}$
$2S \ 1553 - 542$	1273	119	1.5	8.8	$1.05\substack{+0.65\\-0.44}$	$2.24^{+7.99}_{-1.09}$
Swift J1626.6-5156 (10049)	15.3360(6)	5.9	0.7	4.3	$12.5^{+0.6}_{-0.6}$	$17.3^{+0.8}_{-0.8}$
Swift J1626.6-5156 (14642)		5.9	0.7	4.3	$2.87^{+0.66}_{-0.48}$	$4.15_{-0.70}^{+0.84}$
GS 1843+00	-	5.1	1.2	7.3	$1.55\substack{+1.34 \\ -0.66}$	$2.00^{+1.32}_{-0.77}$
XTE J1946+274	15.760(3)	67	0.3	1.9	$8.06^{+0.78}_{-0.71}$	$11.6^{+1.1}_{-1.0}$
KS 1947+300	18.802(3)	3.7	1.8	10.5	$32.9^{+2.4}_{-1.5}$	$46.5^{+3.3}_{-2.1}$
SAX J21035+4545	350.7(1.1)	g	0.5	3.2	$1.49_{-0.16}^{+0.22}$	$2.42_{-0.31}^{+0.36}$
Cep X-4	66.38(3)	1.7	0.05	0.3	$1.22_{-0.11}^{+0.15}$	$1.94_{-0.21}^{+0.19}$
SAX J2239.3+6116	1000	g	0.06	0.4	$1.01\substack{+0.29\\-0.23}$	$1.46\substack{+0.34\\-0.27}$

$$L_{\rm prop}(R) = \frac{GM\dot{M}_{\rm prop}}{R}$$

$$\simeq 4 \times 10^{37} k^{7/2} B_{12}^2 P^{-7/3} M_{1.4}^{-2/3} R_6^5 \,\mathrm{erg \ s^{-1}}$$

$$L_{\rm q} = (\langle \dot{M} \rangle / 10^{-11} \,\mathrm{M_{\odot}yr^{-1}}) \times 6 \times 10^{32} \,\mathrm{erg \ s^{-1}}$$

Cooling in 4U0115+63

BAT Intensity (counts cm⁻² s⁻¹

Conclusions

- Strong progress in the study of highly magnetized neutron stars in last years
- Direct detection of the propeller effect

• New paradigm of the cold accretion disk

 First systematic study of Be systems in quiescent state to study cooling of NS with a strong magnetic fields

