

Long-term spectral study of Cygnus X-1 using INTEGRAL

Floriane Cangemi *T. Beuchert, T. Siegert, V. Grinberg, I. Kreykenbohm, P. Laurent, J. Rodriguez, J. Wilms*

12th INTEGRAL Conference - Geneva

13/02/2019

Black holes spectral states

Black holes spectral states

12th INTEGRAL Conference

12th INTEGRAL Conference

Previous work

2003 - December 2009

Previous work

Long-term study

- 15 years of *INTEGRAL* data, 6 years of new data since *Rodriguez et al. (2015)*
- Classification after V. Grinberg method (*Grinberg et al. (2013)*) -> model-independant method
- Recently in the soft state -> more data in the soft state -> more physical constraints
- Stack data for each state -> better statistics than previous work especially in the soft state

Spectral analysis - Results

Broad band spectral study

- Using JEM-X, ISGRI and SPI

Results

- \rightarrow Basic approach:
- Hard state: reflected Comptonisation + powerlaw tail
- **Soft state**: reflected Componisation + **powerlaw tail**

	kT (keV)	Γ (powerlaw)	Flux
			400 -1000 keV
			(ergs/cm2/s)
Hard	$63.4^{+1.6}_{-1.7}$	$1.31^{+0.25}_{-0.41}$	2.1.10 ⁻⁹
Soft	318^{+14}_{-137}	$1.93^{+0.39}_{-0.71}$	6.6. 10 ⁻¹⁰

Spectral analysis - Results

Broad band spectral study

- Using JEM-X, ISGRI and SPI

Results

- \rightarrow Basic approach:
- Hard state: reflected Comptonisation + powerlaw tail
- **Soft state**: reflected Componisation + **powerlaw tail**

Photon index beyond 400 keV are compatible

	kT (keV)	Г (powerlaw)	Flux
			400 -1000 keV
			(ergs/cm2/s)
Hard	$63.4^{+1.6}_{-1.7}$	$1.31^{+0.25}_{-0.41}$	2.1.10 ⁻⁹
Soft	318^{+14}_{-137}	$1.93^{+0.39}_{-0.71}$	6.6. 10 ⁻¹⁰

Rodriguez et al. (2015)

- Polarised hard tail in the hard state with $PA = 40^{\circ} \pm 14^{\circ}$ and $PF = 75\% \pm 32\%$
- Not enough exposure in the soft state
- \rightarrow Synchrotron radiation from the jets?

Rodriguez et al. (2015)

- Polarised hard tail in the hard state with $PA = 40^{\circ} \pm 14^{\circ}$ and $PF = 75\% \pm 32\%$
- Not enough exposure in the soft state
- \rightarrow Synchrotron radiation from the jets?

New work

- Polarisation detected in the hard state with

 $PA = 40^{\circ} \pm 12^{\circ} \text{ and } PF = 40\% \pm 15\%$

Rodriguez et al. (2015)

- Polarised hard tail in the hard state with $PA = 40^{\circ} \pm 14^{\circ}$ and $PF = 75\% \pm 32\%$
- Not enough exposure in the soft state
- \rightarrow Synchrotron radiation from the jets?

New work

- Polarisation detected in the hard state with

 $PA = 40^{\circ} \pm 12^{\circ} \text{ and } PF = 40\% \pm 15\%$

- Polarisation not detected in the soft state

Upper limit: PF = 51%

Rodriguez et al. (2015)

- Polarised hard tail in the hard state with $PA = 40^{\circ} \pm 14^{\circ}$ and $PF = 75\% \pm 32\%$
- Not enough exposure in the soft state
- \rightarrow Synchrotron radiation from the jets?

New work

- Polarisation detected in the hard state with

 $PA = 40^{\circ} \pm 12^{\circ} \text{ and } PF = 40\% \pm 15\%$

- Polarisation not detected in the soft state

Upper limit: PF = 51%

Jourdain et al. (2012)

 $PA = 40^{\circ} \pm 3^{\circ}$ and PF > 75 % above 400 keV with SPI

Conclusion and discussion

This study

- Broad band spectral analysis for both states, hard and soft
- Detection of a powerlaw tail at high energy in the hard state and ALSO in the soft state
- Polarisation of the high energy tail in the hard state, never detected in the soft state

Origin of the high powerlaw tail?

Photon index in both states are compatible \rightarrow 1) Physical mecanism is the same in both states:

- From the corona:
 - Thermal/non thermal comptonisation: *Romero et al. (2014)* predicted PF = 54% in states where there are no jets
- From the jets:
 - Synchrotron emission (*Laurent et al. (2011), Zdziarski et al. (2012), Rodriguez et al. (2015)*), what about the soft state ? → Dark jets (*Drappeau et al. (2017)*) but we could not see synchrotron emission

2) Physical mecanism is not the same in both states \rightarrow synchrotron emission in the hard state and another mecanism in the soft state

Perspectives

- Do a spectral analysis with more physical models as eqpair, belm...
- Consolidate the polarisation results
- Evolution of the polarisation? Idea: discrete ejections can modify the magnetic field configuration and so disrupt polarisation
- Confrontation to radio data (AMI data)

Perspectives

- Do a spectral analysis with more physical models as eqpair, belm...
- Consolidate the polarisation results
- Evolution of the polarisation? Idea: discrete ejections can modify the magnetic field configuration and so disrupt polarisation
- Confrontation to radio data (AMI data)

Thank you for your attention...

Spectral analysis – Unfolded spectrum

Spectral analysis – SPI

Mesure of polarisation

Dark Jets

Spectral analysis - Parameters

Soft comptonisation		Hard comptonisation			Reflectio n	Power law	Disc	
kT (keV)	τ	T_0 (keV)	kT (keV)	τ	T_0 (keV)	$\Omega/2$	Γ	<i>kT_{disc}</i> (keV)
4.4 ± 0.8	$3.7^{+3.9}_{-0.7}$	$0.018\substack{+0.983\\-0.008}$	58^{+6}_{-5}	1.42 ± 0.12	$1.2^{+0.5}_{-0.7}$	$2.3^{+0.6}_{-0.5}$	$2.01^{+0.07}_{-0.211}$	-
-	-	-	330 ⁺⁷ ₋₁₆₂	$0.01\substack{+0.04\\-0.00}$	$0.32^{+0.12}_{-0.16}$	$1.04^{+0.21}_{-0.19}$	$0.59^{+1.37}_{-0.09}$	1.03 ± 0.05

Spectral analysis - Results

Broad band spectral study

- Using JEM-X, ISGRI and SPI

Results

- Hard state: combination of a soft and hard thermal reflected comptonisation + powerlaw tail to describe the high energy tail
- Soft state: reflected componisation + disc + powerlaw tail

Soft comptonisation		Hard comptonisation		Reflect	Power law	Disc
<i>kT</i> (keV)	τ	<i>kT</i> (keV)	τ	$\Omega/2$	Γ	<i>kT_{disc}</i> (keV)
4.4 ± 0.8	$3.7^{+3.9}_{-0.7}$	58^{+6}_{-5}	1.42 ± 0.12	$2.3^{+0.6}_{-0.5}$	$2.01^{+0.07}_{-0.211}$	-
-	-	330 ⁺⁷ ₋₁₆₂	$0.01\substack{+0.04 \\ -0.00}$	$1.04\substack{+0.21\\-0.19}$	$0.59^{+1.37}_{-0.09}$	1.03 ± 0.05

Two comptonisation components

