The Extragalactic population of NS: the ULX paradigm revolution

GianLuca Israel .
(AO Roma)
(… and any many other colleagues
(EXTRAS and UNSEEN collaboration)
Outline:

- ULX/PULX class
- too B or not too B
- UNSEEN preliminary results

ULX class

Ultraluminous X-ray sources are off-nuclear, point-like X-ray sources in nearby ($d \leq 100 \mathrm{Mpc}$) galaxies exceeding the (isotropic)
Eddington limit
for a stellar-mass
Black Hole (StBH) of 10 Mo

Lux > 3x1039 erg/s
up to $\sim 10^{42} \mathrm{erg} / \mathrm{s}$
About 300 objects
(Earnshaw+ 18)

First detected by EINSTEIN (Fabbiano 88)

Observed Mass Ranges of Compact Objects

Neutron
Star
White
Dwarf

IMBHs needed to form SMBHs in quasars at z>6-7 (Pacucci+ 17)
.. for $25 y$ ears everybody was convinced of the BH nature of ULXs...

In 2014

A longotine ago in a galaxy far, far away....

ULXs are not BHs only !!

ULXs and M82 X-2

Pulsations at 1.37 s discovered from NuSTAR obs of M82 X-2
Sinusoidal pulse shape; PF~20\% Lx~2e40erg/s (@3.2Mpc)~ $100 L_{\text {Edd }}$
Pdot (secular) -2e-10 s/s
P/Pdot = 300yr
Porb $=2.5$ days
$\mathrm{Mc}>5.2 \mathrm{M}$

BHs and Ledd

62.000 quasars (BHs) at different z.
Even assuming the uncertainties in the distances and in the virial mass determination NONE of them is above the Ledd by a factor of 10 or 100.
(Steinhardt \& Elvis 10)

INTEGRAL, Genève 2/19

More PULXs discovered

+2 transient pulsars in NGC1313 (766s) and NGC2403 (18s) with few $10^{39} \mathrm{erg} / \mathrm{s}$ (Trudolyubov 2008,2010)

NGC7793 P13 (P-0.42s)

PULXs overall properties

	M82 X-2	NGC 7793 P13	NGC 5907 ULX1	NGC300 ULX1
Pulse Period	1.37 s	0.42 s	1.15	40-20s
Spin-up (P)	$2 \times 10^{-10} \mathrm{~s} / \mathrm{s}$	$3.5 \times 10^{-11} \mathrm{~s} / \mathrm{s}$	$8 \times 10^{-10} \mathrm{~s} / \mathrm{s}$	6×10^{-7}
Orbital Period	2.5 d	64d	5.3 d	Long or face-on
Superorb. P.	63.8 d	?	78 d	?
Max. Luminosity	$2 \times 10^{40} \mathrm{erg} / \mathrm{s}$	$6 \times 10^{39} \mathrm{erg} / \mathrm{s}$	$>10^{41} \mathrm{erg} / \mathrm{s}$	$5 \times 10^{39} \mathrm{erg} / \mathrm{s}$
Min. Luminosity	$<2.5 \times 10^{38} \mathrm{erg} / \mathrm{s}$	$\sim 4 \times 10^{37} \mathrm{erg} / \mathrm{s}$	$<4 \times 10^{38} \mathrm{erg} / \mathrm{s}$	transient
Optical Comp.	$\mathrm{M}>5 \mathrm{M}$ 。	SG B9I	$\mathrm{M} \leqslant 30 \mathrm{M}_{\odot}$	$\mathrm{M}<20 \mathrm{M} \odot$
References	Bachetti et al. 2014; Brightman et al. 2017; Dall'Osso et al. 2015	Fürst et al. 2016; Israel et al. 2017a	Israel et al. 2017b; Fürst et al. 2017; Walton et al. 2015	Carpano+18

Not easy to identify convincing similarities....

$L x>10^{39} \mathrm{erg} / \mathrm{s}$ and likely massive companions (HMXB or IMXB)

Luminosities

NGC5907 $X-1$ isotropic peak L_{x},bol is 1000 times $L_{\text {Edd }}$ NGC7793 P13 isotropic peak $L x, b o l$ is 500 times $L_{\text {Edd }}$ M82 $X-2$ isotropic peak L_{x},bol is $\quad 100$ times $L_{\text {Edd }}$
NGC300 $X-1$ isotropic peak L_{x},bol is $\quad 50$ times $L_{\text {Edd }}$

In principle, if B is high enough the electron scattering cross section is reduced (in the extraordinary mode for $E<E_{\text {cyc }}$). $L_{\text {Edd },(r)} \simeq 2 L_{\text {Edd }}\left(\frac{B}{10^{12} \mathrm{G}}\right)^{4 / 3}$ For $B=$ few $\times 10^{15} \mathrm{G}$ up to $10^{41} \mathrm{erg} / \mathrm{s}$ can be released on the NS surface ...

A moderate beaming factor $b<1$ (b^{*} Liso=Lacc) is also likely present (at least because we see pulsations).

1/10<b<1/100 (King+ 2001)
Moreover, with that B value and 1.13 s spin period the NS in NGC5907 ULX should be deeply in the propeller phase $\left(r_{m} \gg r_{c}\right)$!

Possible scenario

Expected dipolar B component (close to the Magnetospheric boundary) of the order of

NGC5907 ULX: (0.7-3.0)e12 G @ b~1/10-1/7
Quadrupolar B component (close to the surface/bottom of the accretion column)

NGC5907 ULX: (3-30)e13 G

Accretion stream is channeled by the dipolar field on large scale but feels the quadrupolar component on small scales (polar region)

Fiore +19 show that the scenario is possible (numerical calculation)
p-CRSFs detected in magnetars $\rightarrow \mathrm{B} \sim 1-10 \times 10^{14} \mathrm{G}$ close to the surface, 10 timeslarger then their dipolar component (Tiengo +13).

Super-Eddington outburst of SMC X-3 (Tsygankov+17): Dipolar $\left(1-5 \times 10^{12} G\right)+$ Multipolar $\left(2-3 \times 10^{13} G\right)$ components

New directions

 How many PULXs? 4 out of $300, \sim 1 \%$?We detected PULXs in observations with at least 10,000 counts (XMM)

How many ULXs with such statistics?

14 ULXs ($<5 \%$ of all known ULXs) $\rightarrow 29 \%$ are PULXs
How many ULXs with a statistics such that pulsations with 20% pulsed fractions might be detected?

18 ULXs $\rightarrow 21 \%$ are PULXs
Not all pulsars are expected to be beamed towards $\operatorname{Hess}^{(G G R A L}$, Genive 2/19

Taking the beat of the UNSEEN Recently accepted as LP in AO 17 :

UNSEeN:
Ultraluminous
NS Extragalactic Extreme population

8 pointings + 3 DDTs 986.000 seconds 274 hours ~15 ULXXs (>10.000 cts) ~30 additional S-Edd sources 1-3 new PULXs expected to be detected!

Just completed

The UNSEEN Collaboration: G.L. Israel, G. Rodriquez,

F.Bernardini, H. Earnshaw, T. Roberts, M. Bachetti, A. De Luca, A. Tiengo, A. Belfiore, R. Turolla, M. Mapelli, L. Zampieri, F.Pintore, M. Middelton, P.Esposito, F.Fuerst, D. Walton, P.Casella, S. Dall'Osso, D. Dagostino, G. Novara,R. Slavaterra, F.Harrison, M. Brightman,
C. Pinto, F.Haberl, M. Marelli, A. Walter, L. Stella, A. Papitto

XMM LP

M51 observed in May 2018 for about 75ks

+ 3 DTT ($96+63+64 k s$) requested on in June 2018

M51 ULX7

One of the best example of Poissonian process and white noise!

Accelerated search

Dominated by orbital motion

Up to 10^{6} FFTs needed to cover the 4D phase space.

Use of HPCs

Some implications/Conclusions

+ Even extreme ULXs (>1e41 erg/s), like NGC5907 ULX-1, can hosts accreting NSs
+ Spectral classification/Lx is not an unambiguous way to classify ULXs: NGC 5907 ULX, NGC7793 P13 and M51 ULX7 have spectra/LX not dissimilar from other ULXs (but harder). Alternatively, many ULXs are NSs
+ The large "local" Pdot, the orbital effects, the pulse intermittance and small PF make difficult the detection of these pulsars with standard tools and current instruments. Athena is expected to make a significant contribution fr PULXs.
+ PULXs challange the current models of accretion, even assuming a moderate beaming.
A multipolar B component close to the surface might account for The PULXs properties (other scenarios are still viable)
+ Developed pipelines can be applied straightforwardly to NuSTAR, NICER and Chandra data and, in the future, to eXTP and Athena

