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We know this system since 1966 ...
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ABSTRACT

This paper reports the results of X-ray spectrum and intensity measurements for several cosmic X-ray
sources. Two flights were conducted, one from Kauai, Hawaii on July 28, 1966, and the other from
Johnston Atoll on September 20, 1966. Proportional counters with anticoincidence shields to eliminate
charged-particle background counts were used to detect the X-rays. Four known sources were observed:
Sco XR-1, Tau XR-1, Cyg XR-1, and Cyg XR-2, Total intensity determinations were made for all
of these sources, and spectra were obtained for Sco XR-1 and Cyg XR-2. A search was made for X-rays
from the Large and Small Magellanic Clouds, but no X-rays above background were found in that region
of the sky. An upper limit of the X-ray intensity from the Magellanic Clouds has been determined from

these data. A wea. X-rai' source not Ereviousl% observed was found in the constellation Vela :Vcl XR-1 :
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In other words, since the early times of X-ray astronomy
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And we know it rather well by now

Distance (1) 2.42 (2.25-2.60) kpc

Mass donor 2

Accretor () neutron star, 1.9+0.7-0.5 M

Orbital period )

a sin j (2.3) 113.89 lt-sec, i > 79 deg

Eccentricity Q)
Pulse period 4)

(1) Bailer-Jones+ (2018)

(2) Giménez-Garcia+ (2016)
(3) Bildsten+ (1997)

4 Kreykenbohm+ (2008)

BO.5la, 21.5¢4 M,

8.964357+0.000029 d

0.0898+0.0012

~283 s (fluctuating)

Distance (lt-s)

250
200
150
100

50

IIII|IIIIIIIII|IIII|IIII|II

I|IIII|IIII|IIII|IIII|1III

LI L B B

accretion
wake

T T T 7T

L b b b b b b b b b b

TR B B

-300

-200 -100
Distance (1t-s)

o.__________ —

100



Different diagnostics (obs. & models) covering different scales

UVOIR
spectroscopy ( X-ray line )

spectroscopy
Wind Pulse Period
Structure Evolution
Pulse Profiles
Flow near
Magnetosphere
Overall flux variations Accretion
Column

Continuum Cyclotron Lines
spectroscopy




Terminal wind speeds are estimated quite differently

Dupree et al. (1980) Vo = 1700 km/s IUE (selected lines & phases)
Prinja et al. (1990) V.. = 1100 km/s IUE, P Cyg profiles

van Loon et al. (2001) Ve = 600 km/s Modelling IUE lines

Watanabe et al. (2006) V.= 1100 km/s Modelling Chandra X-ray gratings

Giménez-Garcia et al. (2016) Ve = 700+200_100 km/s IUE + optical + 2MASS, SED fitting & modelling

with POWR code
Sander et al. (2018) Ve = 600 km/s Detailed modelling with POWR code, including

X-ray effects

- Essential system parameter estimate depends significantly on assumptions taken.



Sander et al. (2018):

e Hydrodynamically consistent atmosphere
model describing the wind stratification,
including effects of X-ray illumination in
simplified way.

e Detailed study of contributions of different
ions to wind acceleration.

e Velocity field turns out quite different from
usually assumed [3-law: wind velocity at
distance of neutron star may be B-law

much lower.
HD Model.
very different (see talk by I. El Mellah).

v(r) [km/s)

e Flow of matter may be
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Flux variations are observed on many time scales

e Orbital: ~1-10d
e Within orbit: hours — days
e Pulse period: minutes
On longer or shorter time scales no

evident variation has been reported.
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No two orbits are the same, but there are stable mean patterns

VELA X-1 (4U 09C0-40)
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Absorption varies strongly along the orbit

| Various satellites find strong
100 41 Ny variations along orbit as
expected from large
structures.
a But same phases can look
m ] "
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Apparently chaotic variability at shorter time scales
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The flux can change from one pulse to next
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Pulse-averaged flux shows log-normal distribution

Flrst et al. (2010):

Bins of 283.5 s (~average
over pulse), filtered to
avoid eclipse.

“Shock fronts and
turbulence breaking up
clumps can transfer any
given distribution into a
log-normal like
distribution.”
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Modelling the right amount of variation can be difficult
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realistic light curve (Ducci et al. 2009),
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but clump sizes required uncomfortably large.

‘Realistic’ clump model for Vela X-1 under-predicts
observed absorption variations,
if assumed to be caused by
clumps (Grinberg et al. 2017)



X-ray fluorescence lines yield additional information
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X-ray fluorescence lines, more analysis underway

e On-going study by Maria Lomaeva (ESA, ESTEC) on XMM-Newton RGS
spectra taken after eclipse egress. Analysis ongoing.
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The Vela X-1 system is now also found in the radio!

Very recent result (Degenaar, van den Eijnden, et al.):
o Highly significant (~100 pdy) radio
detection of Vela X-1 with ATCA.

° Observation done by chance at
mid eclipse. More foreseen.

° Flat radio spectrum, like for a
compact jet.

o Cannot exclude donor star as

radio source yet, but this would
also be interesting.




Pulse profiles should allow to disentangle the emission geometry

Raubenheimer (1990)

e The pulse profile is complex at lower energies and overall rather stable usually.
e Doroshenko et al. (2011) found changed pulse pattern in “off-state”.

= |n principle able to derive information on emission geometry.

But complicated analysis if general relativity and realistic emission geometries
are taken into account! Still quite a bit of work on models and comparison.
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Cyclotron lines maybe more puzzling than enlightening

e (Cyclotron Resonant Scattering Features found in 36 % i Vela X1
sources so far (Staubert et al. 2019). = s0r e ¢+u

e Most direct measure of magnetic field strength. ii:::;nzlz *i#}"iﬁi + +
Variations in observed centre energy = changes in ¢ f
(height of) emission region. 20 AT

e Furst et al. (2014): harmonic line varies with
luminosity. No clear picture for fundamental.
e Jietal (2019, submitted): possible long-term trend

in energy (Swift BAT).
= Will need improved accretion column models
to better interpret the data.
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More data is coming from large observing campaign in January 2019

e Major observational campaign
motivated by planned X-Calibur
balloon observations
(polarisation).
Coordinated by H. Krawczynski
with involvement by V. Grinberg
and F. Farst.
Sadly, the balloon deflated
prematurely, but INTEGRAL data
for one full orbit plus NuSTAR
and some Swift & NICER
observations.
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