

Hard X-ray observations of Galactic sources: the HMXB population and black hole spin

John Tomsick Space Sciences Laboratory UC Berkeley

Are HMXBs the progenitors of BH-BH binaries (BBH)?

- Massive binary evolution has two HMXB phases
 - However, we don't know of very many BH-HMXBs
 - Motivates searches for HMXBs
- BH spin should not change very much from formation to merger
 - HMXB spins should match BBH spins
 - Motivates BH spin measurements

Are HMXBs the progenitors of BH-BH binaries (BBH)?

- Massive binary evolution has two HMXB phases
 - However, we don't know of very many BH-HMXBs
 - Motivates searches for HMXBs
- BH spin should not change very much from formation to merger
 - HMXB spins should match BBH spins
 - Motivates BH spin measurements

Are HMXBs the progenitors of BH-BH binaries (BBH)?

- Massive binary evolution has two HMXB phases
 - However, we don't know of very many BH-HMXBs
 - Motivates searches for HMXBs
- BH spin should not change very much from formation to merger
 - HMXB spins should match BBH spins
 - Motivates BH spin measurements

HMXBs accrete for <10⁶⁻⁷ years

- Cyg X-1: dM/dt~5x10⁻⁹ M_{sun}/year
- L_{Edd} ~10⁻⁷ M_{sun} /year

Overview

- Searches for HMXBs
 - Surveys with INTEGRAL and NuSTAR
 - Follow-up with NuSTAR, Chandra, and ground-based optical/NIR
- Black hole spin
 - Thermal and reflection methods
 - Improvements on reflection measurements with NuSTAR
 - Spins of BHs in HMXBs and in BBHs

HMXBs and INTEGRAL

- TOO observation of 4U 1630-47 in early 2003
- Turns out that Norma region is full of HMXBs

allan 6418-4532 noino. IGR J16207-5

293 ks INTEGRAL/IBIS image Tomsick+04 (proceedings of Munich workshop)

HMXB searches

- Chandra follow-up of IGR sources
- Norma Arm Region Chandra Survey (NARCS) and NuSTAR survey
 - Few HMXB candidates (Fornasini+14+17, Rahoui+14)
- Galactic Center NuSTAR survey
 - Few HMXB candidates (Hong+16)
- NuSTAR Legacy program to observe unidentified IGR sources
 - See talk by Maïca Clavel on Thursday
- NuSTAR serendipitous source survey

Chandra follow-up of IGR sources

- Going from few arcminute INTEGRAL positions to subarcsecond Chandra positions
- In total, we have obtained
 68 Chandra
 counterparts

INTEGRAL 90% confidence error circle (3.3 arcminute radius) on a 3.6 micron Spitzer/GLIMPSE image

Chandra follow-up of IGR sources

- Going from few arcminute INTEGRAL positions to subarcsecond Chandra positions
- In total, we have obtained
 68 Chandra
 counterparts

Tomsick+08

Optical/NIR spectroscopy

- Our effort
 - Chaty+08
 - Butler+09
 - Zurita Heras+09
 - Tomsick+11
 - Coleiro+13
 - Fortin+18
 - Hare+19, in prep.
- Many other groups such as Masetti et al.

Bird+16 catalog listed 116 detected HMXBs (previously known and new). Our effort has yielded 12 new IGR HMXBs and 4 candidates.

logN-logS

- View of the HMXB population from INTEGRAL observations
- INTEGRAL hugely successful in ~tripling the number of known supergiant HMXBs
- However, need better sensitivity to constrain the faint end

logN-logS for persistent HMXBs

The Nuclear Spectroscopic Telescope Array

- Harrison+13
- Hard X-ray optics
- 10 meter deployable mast
- CdZnTe detectors

Energy Range:	3-79 keV		
Angular Resolution:	58 arcsec (HPD) 18 arcsec (FWHM)		
Sensitivity (3σ, I Ms):	2 x 10 ⁻¹⁵ erg/cm ² /s (6-10 keV) 1 x 10 ⁻¹⁴ erg/cm ² /s (10-30 keV)		
Field of View:	12 x 12 arcmin		
Spectral Resolution:	400 eV at 6 keV 900 eV at 60 keV		
Effective Area:	900 cm ² at 9 keV 100 cm ² at 60 keV		
Throughput	~400 events/s/module		

NuSTAR fields (8 of 331)

 The 40 month survey used 3-24 keV images from 331 observations

NuSTAR fields (8 of 331)

Masking out the target sources and the stray light

Sky coverage and source classifications

Results from 40 month catalog

- 276 of 497 sources classified (NuSTAR/X-ray/optical spectroscopy)
- 260 AGN (Lansbury+17)
- 16 Galactic
 - Active stars, CVs, X-ray binaries, and a magnetar (Tomsick+17)
 - HMXB and likely HMXB classified so far
 - IGR J13020-6359 (=S43): previously known accreting pulsar
 - NuSTAR J105008-5958.8 (=S27): new HMXB candidate

NuSTAR J105008-5958.8: new HMXB candidate

- XMM+NuSTAR
 - Γ = 1.7^{+0.6}_{-0.5}
 - $N_{\rm H} = (3.1^{+2.3}_{-1.5}) \times 10^{22} \, {\rm cm}^{-2}$
- Optical counterpart
 - $A_V = 4.7 \pm 0.5$ (DIB line)
 - $d = 7 \pm 1 \text{ kpc} (l, b = 288.3^{\circ}, -0.6^{\circ})$
 - Gaia parallax = -0.007 ± 0.039 mas
 - R = 15.1, V=16.5
- Absolute mag and L_x (d = 7 kpc)
 - $M_V = -2.4 \pm 0.6$ (B2Ve)
 - $L_x = (4 \pm 2)x10^{32} \text{ erg/s}$
- Similarities to the first BH/Be system MWC 656 (Casares+14)
 - From radial velocity curve: P_{orb} ~60d, M_{BH} ~5 M_{sun} , M_2 ~13 M_{sun}
 - Please do a similar study for J1050

Extending the logN-logS

- HMXB logN-logS only well-measured down to 10⁻¹¹ erg/cm²/s
- Two serendips are likely or definite HMXBs (S27 and S43)
- The survey is highly incomplete near the Galactic plane
- Data still allow for an unknown low flux HMXB population
- Still more work to do to fully characterize the Galactic HMXB population

- Surface density (logN-logS) for HMXBs at -5°<b<5° (adapted from Tomsick+17)
- Black curve from Lutovinov+13 based on the INTEGRAL survey

What HMXB properties provide information about whether they are BBH progenitors?

- Orbital parameters: P_{orb}, e
 - Important for understanding binary evolution (merging times, kicks)
- BH mass
 - Distributions show higher values for BBHs (Perna+19)
- BH spin
 - If HMXBs are the progenitors of BBHs, then their distributions of spin magnitudes should match
 - Spin orientation

Mass distributions for 24 BHs in X-ray binaries ("X-rays") and 20 BHs in mergers ("GWs"). Maybe not a selection effect after all?

Measuring BH spin for X-ray binaries

- Methods for measuring a_{*} rely on constraining the inner radius of the accretion disk (R_{in})
- If R_{in}=R_{ISCO}, then determining R_{in} gives a measurement of a_{*}
- As long as R_{in}<6R_g, we have a lower limit on a_{*}

For example:

 A measurement of R_{in} = 4R_g means that R_{ISCO}≤4R_g and a_{*}≥0.55

Modeling spectra to constrain BH spin: Thermal

- Measuring a_{*} by modeling the thermal disk component
 - Free parameters are R_{in} (a_{*}) and dM/dt
- Concept is simple, but you need to know:
 - M_{BH}
 - Source distance
 - Inner disk inclination

Modeling the LMC X-3 thermal component (Davis+06; Steiner+10; Steiner +14 McClintock+14)

Using reflection to measure BH spin

- Critical region of the spectrum a few to ~50 keV
- The NuSTAR capabilities (bandpass, throughput, energy resolution) are very well-suited for reflection studies

Reflection measurements with NuSTAR

Figure credit: Michael Parker

Results published in:

- Miller+13
- Tomsick+14
- Miller+15
- Parker+15
- Walton+16
- Parker+16
- Tomsick+18
- Residuals to a power-law continuum model

Cyg X-1 spectra: model-independent look

- Dip at 6.7 keV due to absorption by stellar wind
- All profiles show red wing due to gravitational redshift

Applying reflection model to Cyg X-1 spectra: BH spin and inclination constraints

Walton+16

Warped disk?

- From NuSTAR studies
 - i > 40° (Tomsick+14)
 - 37°<i<42° (Walton+16)
- These are significantly higher than the measured binary inclination
 - $i_{binary} = 27.1^{\circ} \pm 0.8^{\circ} (Orosz+11)$
- Possible misalignment between the BH spin axis and the orbital angular momentum vector

- Warped disk calculation by Schandl & Meyer (1994)
- See also King & Nixon (2016)

Cyg X-1 thermal method

- a ∗>0.983
 - i = 27.1° (binary)
 - Gou, McClintock, Remillard, et al. 2014
- a_{*} ~ 0.96
 - i = 40° (Walton+16)
- With the higher inclination, the thermal agrees better with the reflection (0.93-0.96)

Summary of HMXB BH spin measurements

Source	a₊ reflection	a₊ thermal, i _{binary}	a₊ thermal, i _{inner disk}	References
Cyg X-1	0.945 ± 0.015	>0.983	~0.96	Walton+16, Gou+14
LMC X-1	0.97 ^{+0.02} -0.13	0.92 ^{+0.05} -0.07	?	Steiner+12, Gou+09
M33 X-7	-	0.84 ± 0.05	?	Liu+08+10
LMC X-3	-	0.25 ^{+0.20} -0.29	?	Steiner+14

- Lots more LMXB BH spin measurements
 - Very useful for checking consistency between methods
 - Excellent agreement for GX 339-4 and GRS 1915+105
 - Not as good for GRO J1655-40 and 4U 1543-47

HMXB spins vs. BBH effective spins

Possible interpretation for spin mismatch

- If the low χ_{eff} BBH values continue to be seen, perhaps BBHs are formed in capture events in dense star clusters rather than HMXBs
 - Estimate of capture rates has a large uncertainty, but could be high enough (Rodriguez+16)
 - BHs still may have at least moderate values of a* but with random θ_1 and θ_2

instead of

Summary and Conclusions

HMXB population

- Better sensitivity (NuSTAR and Chandra) has not yet produced INTEGRAL's rate of discovery
- Framework for constraining the faint population (Lutovinov+13, Tomsick+17, Clavel+19)
- Currently working on classifications of sources detected in the surveys
- BH spin
 - Reflection and thermal method measurements show that BHs in HMXBs tend to have high spin
 - BBH tend to have low χ_{eff}
 - Do they form as captures in clusters or HMXBs?