Hard X-ray observations of Galactic sources: the HMXB population and black hole spin

John Tomsick
Space Sciences Laboratory
UC Berkeley
Are HMXBs the progenitors of BH-BH binaries (BBH)?

- Massive binary evolution has two HMXB phases
 - However, we don’t know of very many BH-HMXBs
 - Motivates searches for HMXBs

- BH spin should not change very much from formation to merger
 - HMXB spins should match BBH spins
 - Motivates BH spin measurements

Mandel & Farmer (2018)
van den Heuvel 1976, 2018
Are HMXBs the progenitors of BH-BH binaries (BBH)?

- Massive binary evolution has two HMXB phases
 - However, we don’t know of very many BH-HMXBs
 - Motivates searches for HMXBs

- BH spin should not change very much from formation to merger
 - HMXB spins should match BBH spins
 - Motivates BH spin measurements

van den Heuvel 1976
Are HMXBs the progenitors of BH-BH binaries (BBH)?

- Massive binary evolution has two HMXB phases
 - However, we don’t know of very many BH-HMXBs
 - Motivates searches for HMXBs

- BH spin should not change very much from formation to merger
 - HMXB spins should match BBH spins
 - Motivates BH spin measurements

HMXBs accrete for <10^{6-7} years
- Cyg X-1: dM/dt\sim5\times10^{-9} \, M_{\odot}/year
- L_{\text{Edd}}\sim10^{-7} \, M_{\odot}/year

Fragos & McClintock (2015)
Overview

- Searches for HMXBs
 - Surveys with INTEGRAL and NuSTAR
 - Follow-up with NuSTAR, Chandra, and ground-based optical/NIR

- Black hole spin
 - Thermal and reflection methods
 - Improvements on reflection measurements with NuSTAR
 - Spins of BHs in HMXBs and in BBHs
HMXBs and INTEGRAL

- TOO observation of 4U 1630-47 in early 2003
- Turns out that Norma region is full of HMXBs

293 ks INTEGRAL/IBIS image
Tomsick+04 (proceedings of Munich workshop)
HMXB searches

- Chandra follow-up of IGR sources

- Norma Arm Region Chandra Survey (NARCS) and NuSTAR survey
 - Few HMXB candidates (Fornasini+14+17, Rahoui+14)

- Galactic Center NuSTAR survey
 - Few HMXB candidates (Hong+16)

- NuSTAR Legacy program to observe unidentified IGR sources
 - See talk by Maïca Clavel on Thursday

- NuSTAR serendipitous source survey
Chandra follow-up of IGR sources

- Going from few arcminute INTEGRAL positions to subarcsecond Chandra positions
- In total, we have obtained 68 Chandra counterparts

INTEGRAL 90% confidence error circle (3.3 arcminute radius) on a 3.6 micron Spitzer/GLIMPSE image
Chandra follow-up of IGR sources

- Going from few arcminute INTEGRAL positions to subarcsecond Chandra positions

- In total, we have obtained 68 Chandra counterparts

Tomsick+08
Optical/NIR spectroscopy

- **Our effort**
 - Chaty+08
 - Butler+09
 - Zurita Heras+09
 - Tomsick+11
 - Coleiro+13
 - Fortin+18
 - Hare+19, in prep.

- **Many other groups**
 such as Masetti et al.

Bird+16 catalog listed 116 detected HMXBs (previously known and new). Our effort has yielded 12 new IGR HMXBs and 4 candidates.
View of the HMXB population from INTEGRAL observations

INTEGRAL hugely successful in ~ tripling the number of known supergiant HMXBs

However, need better sensitivity to constrain the faint end

logN-logS for persistent HMXBs

Lutovinov+13
The Nuclear Spectroscopic Telescope Array

- Harrison+13
- Hard X-ray optics
- 10 meter deployable mast
- CdZnTe detectors

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Range</td>
<td>3-79 keV</td>
</tr>
<tr>
<td>Angular Resolution</td>
<td>58 arcsec (HPD)</td>
</tr>
<tr>
<td></td>
<td>18 arcsec (FWHM)</td>
</tr>
<tr>
<td>Sensitivity (3σ, 1 Ms)</td>
<td>2×10^{-15} erg/cm2/s (6-10 keV)</td>
</tr>
<tr>
<td></td>
<td>1×10^{-14} erg/cm2/s (10-30 keV)</td>
</tr>
<tr>
<td>Field of View</td>
<td>12 x 12 arcmin</td>
</tr>
<tr>
<td>Spectral Resolution</td>
<td>400 eV at 6 keV</td>
</tr>
<tr>
<td></td>
<td>900 eV at 60 keV</td>
</tr>
<tr>
<td>Effective Area</td>
<td>900 cm2 at 9 keV</td>
</tr>
<tr>
<td></td>
<td>100 cm2 at 60 keV</td>
</tr>
<tr>
<td>Throughput</td>
<td>~400 events/s/module</td>
</tr>
</tbody>
</table>

NuSTAR Serendipitous Survey
- Alexander+13
- Lansbury+17 (40 month)
- Tomsick+17+18 (Galactic)
The 40 month survey used 3-24 keV images from 331 observations.
Masking out the target sources and the stray light
Sky coverage and source classifications

Results from 40 month catalog
- 276 of 497 sources classified (NuSTAR/X-ray/optical spectroscopy)
- 260 AGN (Lansbury+17)
- 16 Galactic
 - Active stars, CVs, X-ray binaries, and a magnetar (Tomsick+17)
 - HMXB and likely HMXB classified so far
 - IGR J13020-6359 (=S43): previously known accreting pulsar
 - NuSTAR J105008-5958.8 (=S27): new HMXB candidate
NuSTAR J105008-5958.8: new HMXB candidate

- **XMM+NuSTAR**
 - $\Gamma = 1.7^{+0.6}_{-0.5}$
 - $N_H = (3.1^{+2.3}_{-1.5}) \times 10^{22}$ cm$^{-2}$

- **Optical counterpart**
 - $A_V = 4.7 \pm 0.5$ (DIB line)
 - $d = 7 \pm 1$ kpc ($l,b = 288.3^\circ, -0.6^\circ$)
 - Gaia parallax = -0.007 ± 0.039 mas
 - $R = 15.1$, $V=16.5$

- **Absolute mag and L$_X$ ($d = 7$ kpc)**
 - $M_V = -2.4 \pm 0.6$ (B2Ve)
 - $L_X = (4 \pm 2) \times 10^{32}$ erg/s

- **Similarities to the first BH/Be system MWC 656 (Casares+14)**
 - From radial velocity curve: $P_{\text{orb}} \sim 60$ d, $M_{\text{BH}} \sim 5$ M_{\odot}, $M_2 \sim 13$ M_{\odot}
 - **Please do a similar study for J1050**
Extending the logN-logS

- HMXB logN-logS only well-measured down to 10^{-11} erg/cm2/s
- Two serendips are likely or definite HMXBs (S27 and S43)
- The survey is highly incomplete near the Galactic plane
- Data still allow for an unknown low flux HMXB population
- Still more work to do to fully characterize the Galactic HMXB population

- Surface density (logN-logS) for HMXBs at $-5^\circ < b < 5^\circ$ (adapted from Tomsick+17)
- Black curve from Lutovinov+13 based on the INTEGRAL survey
What HMXB properties provide information about whether they are BBH progenitors?

- Orbital parameters: P_{orb}, e
 - Important for understanding binary evolution (merging times, kicks)

- BH mass
 - Distributions show higher values for BBHs (Perna+19)

- BH spin
 - If HMXBs are the progenitors of BBHs, then their distributions of spin magnitudes should match
 - Spin orientation

Mass distributions for 24 BHs in X-ray binaries (“X-rays”) and 20 BHs in mergers (“GWs”). Maybe not a selection effect after all?
Measuring BH spin for X-ray binaries

- Methods for measuring a_* rely on constraining the inner radius of the accretion disk (R_{in})

- If $R_{\text{in}} = R_{\text{ISCO}}$, then determining R_{in} gives a measurement of a_*

- As long as $R_{\text{in}} < 6R_g$, we have a lower limit on a_*

For example:
- A measurement of $R_{\text{in}} = 4R_g$ means that $R_{\text{ISCO}} \leq 4R_g$ and $a_* \geq 0.55$
Modeling spectra to constrain BH spin: Thermal

- Measuring a_* by modeling the thermal disk component
 - Free parameters are $R_{\text{in}}(a_*)$ and dM/dt
- Concept is simple, but you need to know:
 - M_{BH}
 - Source distance
 - Inner disk inclination

Modeling the LMC X-3 thermal component (Davis+06; Steiner+10; Steiner +14 McClintock+14)
Using reflection to measure BH spin

- Critical region of the spectrum a few to \sim50 keV
- The NuSTAR capabilities (bandpass, throughput, energy resolution) are very well-suited for reflection studies

adapted from Middleton 2015
Reflection measurements with NuSTAR

- Residuals to a power-law continuum model

Figure credit: Michael Parker

Results published in:
- Miller+13
- Tomsick+14
- Miller+15
- Parker+15
- Walton+16
- Parker+16
- Tomsick+18
Cyg X-1 spectra: model-independent look

- Dip at 6.7 keV due to absorption by stellar wind
- All profiles show red wing due to gravitational redshift
Applying reflection model to Cyg X-1 spectra: BH spin and inclination constraints

- $0.93 < a_* < 0.96$
- $37^\circ < i < 42^\circ$
 - Inner disk inclination

Walton+16
Warped disk?

- From *NuSTAR* studies
 - $i > 40^\circ$ (Tomsick+14)
 - $37^\circ < i < 42^\circ$ (Walton+16)

- These are significantly higher than the measured binary inclination
 - $i_{\text{binary}} = 27.1^\circ \pm 0.8^\circ$ (Orosz+11)

- Possible misalignment between the BH spin axis and the orbital angular momentum vector

 - Warped disk calculation by Schandl & Meyer (1994)
 - See also King & Nixon (2016)
Cyg X-1 thermal method

- $a^* > 0.983$
 - $i = 27.1^\circ$ (binary)

- $a^* \sim 0.96$
 - $i = 40^\circ$ (Walton+16)

- With the higher inclination, the thermal agrees better with the reflection (0.93-0.96)
Summary of HMXB BH spin measurements

<table>
<thead>
<tr>
<th>Source</th>
<th>(a_\ast) reflection</th>
<th>(a_\ast) thermal, (i_{\text{binary}})</th>
<th>(a_\ast) thermal, (i_{\text{inner disk}})</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyg X-1</td>
<td>0.945±0.015</td>
<td>>0.983</td>
<td>~0.96</td>
<td>Walton+16, Gou+14</td>
</tr>
<tr>
<td>LMC X-1</td>
<td>0.97^{+0.02}_{-0.13}</td>
<td>0.92^{+0.05}_{-0.07}</td>
<td>?</td>
<td>Steiner+12, Gou+09</td>
</tr>
<tr>
<td>M33 X-7</td>
<td>-</td>
<td>0.84±0.05</td>
<td>?</td>
<td>Liu+08+10</td>
</tr>
<tr>
<td>LMC X-3</td>
<td>-</td>
<td>0.25^{+0.20}_{-0.29}</td>
<td>?</td>
<td>Steiner+14</td>
</tr>
</tbody>
</table>

- Lots more LMXB BH spin measurements
 - Very useful for checking consistency between methods
 - Excellent agreement for GX 339-4 and GRS 1915+105
 - Not as good for GRO J1655-40 and 4U 1543-47
HMXB spins vs. BBH effective spins

- \(\chi_{\text{eff}} = \frac{M_1 a_1 \cos \theta_1 + M_2 a_2 \cos \theta_2}{M_1 + M_2} \)
- Spins for BBHs are either low or strongly misaligned
- Neither possibility seems to match with expectations from HMXBs

![Diagram of HMXB BH spins and Effective spin for BBHs]
Possible interpretation for spin mismatch

- If the low χ_{eff} BBH values continue to be seen, perhaps BBHs are formed in capture events in dense star clusters rather than HMXBs
 - Estimate of capture rates has a large uncertainty, but could be high enough (Rodriguez+16)
 - BHs still may have at least moderate values of $a*$ but with random θ_1 and θ_2

instead of

?
Summary and Conclusions

- **HMXB population**
 - Better sensitivity (NuSTAR and Chandra) has not yet produced INTEGRAL’s rate of discovery
 - Framework for constraining the faint population (Lutovinov+13, Tomsick+17, Clavel+19)
 - Currently working on classifications of sources detected in the surveys

- **BH spin**
 - Reflection and thermal method measurements show that BHs in HMXBs tend to have high spin
 - BBH tend to have low χ_{eff}
 - Do they form as captures in clusters or HMXBs?