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High-energy view of hard X-ray selected radio galaxies

Outline
Broad-band study of the first sample of radio galaxies selected in
the hard X-rays (64 AGNs from the INTEGRAL and Swift/BAT
surveys with an extended radio morphology; Bassani et al. 2016) —
see G. Bruni's talk

e Giant radio galaxies: X-ray properties and radio connection

@ Absorption properties

» The X-ray column density distribution
» Relationship with the radio and mid-IR absorption




GRGs: X-ray properties and radio connection
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GRGs: X-ray properties and radio connection

Broad X-ray data

The X-ray properties of the hard X-ray selected GRGs have been
studied in Ursini et al. (2018b)

Name z Optical log Mgy X-ray Ref. Radio Ref.

class data data
0318+684 0.090100 Sy1.9 - XMM+NuSTAR+BAT+IBIS Ursini+18b VLA Lara+01
PKS 0707-35 0.110800  Sy2 - NuSTAR+BAT " ATCA Saripalli+13
Mrk 1498 0.054700 Sy1.9 8.59 XMM+NuSTAR+BAT " VLA  Schoenmakers+00
PKS 2331-240  0.047700 Syl.9 8.75 XMM+NuSTAR+BAT " VLBA Hernandez-Garcia+17
PKS 2356-61 0.096306  Sy2 8.96 NuSTAR+BAT " ATCA  Subrahmanyan+96
B3 0309+411b  0.134000 Syl - XMM+BAT+IBIS Molina+08 VLA  Schoenmakers+00
4C 73.08 0.058100  Sy2 - XMM+NuSTAR Ursini+18a VLA Lara+01
HE 1434-1600  0.144537 BLQSO  8.64 Swift/XRT+BAT Panessa+16 VLA Letawe-+04
IGR J14488-4008 0.123  Syl.5 8.58 XMM+BAT+IBIS Molina+15 GMRT Molina+15
4C 63.22 0.20400 Syl - Swift/XRT+BAT Panessa+16 VLA Lara+01
4C 34.47 0.20600 Syl 8.01 XMM Page+04 WSRT Jagers+82
IGR J17488-2338  0.240 Syl.2 9.11 XMM-+IBIS Molina+14 VLA Condon-+98
PKS 2014-55 0.060629  Sy2 - Swift/XRT+BAT Panessa+16 ATCA Saripalli+07
4C 74.26 0.10400 Syl 9.37 XMM+BAT+IBIS Molina+08 VLA Lara+01

NuSTAR+XRT Lohfink+17
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Radio—X-ray relationship |. Fundamental plane

Radio core vs. X—ray luminosity
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adio—X-ray relationship I. Fundamental plane

Radio core vs. X—ray luminosity

45
. Epx=1.1+03
The radio core and X-ray 44 [ &y =0.6 (Merloni et al. 2003)

luminosities are correlated, as
expected from the fundamental
plane of black hole activity
(Merloni et al. 2003).
The slope is significantly larger
than the Merloni et al.
correlation...

. And consistent with hard X-ray
selected AGNs (Panessa et al.
2015).
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GRGs: X-ray properties and radio connection

(Coriat et al. 2011)
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Radio—X-ray relationship Il. Present vs. past activity

Can we compare the present level
of activity with the past one?
From the X-ray luminosity

— L | (‘current’ bolometric
luminosity), to be compared with:
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Radio—X-ray relationship Il. Present vs. past activity

Can we compare the present level
of activity with the past one?
From the X-ray luminosity

— L | (‘current’ bolometric
luminosity), to be compared with:

(a) From the radio lobes
— Lo
g (LI, /Loet) = 357
(Van Velzen et al. 2015)




GRGs: X-ray properties and radio connection

Radio—X-ray relationship Il. Present vs. past activity

Bolometric luminosity from radio vs. X-rays
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Radio—X-ray relationship Il. Present vs. past activity

Can we compare the present level
of activity with the past one?
From the X-ray luminosity

— L | (‘current’ bolometric
luminosity), to be compared with:

(b) From the 151-MHz luminosity
— the jet power
Q =3x 1082/ W
(Willott et al. 1999)
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Radio—X-ray relationship Il. Present vs. past activity

X-ray—derived bolometric luminosity vs. jet power
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Radio—X-ray relationship Il. Present vs. past activity

X-ray—derived bolometric luminosity vs. jet power
Can we compare the present level 47 . ® X a x
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Absorption properties

X-ray absorption

Column density distribution (Panessa
et al. 2016): consistent with the
unified model of AGNs...
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Absorption properties

X-ray absorption

Column density distribution (Panessa . .
SaIN2016) Reoneiere I ihine ... But no evidence for Compton-thick
unifiéd modél of AGNs radio galaxies (Ursini et al. 2018a)
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Absorption properties

X-ray absorption

A correlation between X-ray and
21-cm absorption was reported in
samples of obscured (Moss et al.
2017) and compact (Ostorero et
al. 2017) radio galaxies.




Absorption properties

X-ray absorption

21-cm vs. X-ray column density

A correlation between X-ray and 21 Typels
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Absorption properties

X-ray absorption

21-cm vs. X-ray column density

al. 2017) radio galaxies.
In our case, we indeed observe a

higher 21-cm detection probability ?ﬁﬁ I .
in X-ray obscured objects... 20 W
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Absorption properties

Radio/X-ray/mid-IR absorption

The strength of the silicate feature
at 9.7 um (S =In F(Xp)/Fc(Xp))
is a diagnostic of the dusty torus.

@ S >0 — emission
(expected in Type 1) ar : ; : :

@ S < 0 — absorption
(expected in Type 2) 3

@ S< —1—> deep
absorption, not entirely
explained by torus
(Garcia-Gonzilez et al. :
2017) 1

Deep silicate absorption indicates P~
a contamination from obscuration ok . . . .
in the host galaxy (Goulding et al. 4 6 8 10 12 14

. rest wavelength (um)
;812) Hatziminaoglou et al. (Weedman et al. 2012)
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Absorption properties

Radio/X-ray/mid-IR absorption
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Absorption properties

Radio/X-ray/mid-IR absorption

Sources with silicate absorption
are X-ray obscured and detected
at 21 cm.

The most heavily obscured, NGC
612, has a prominent dust lane
along the galaxy disc.
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Neutrino detections

Collaboration with the ANTARES team (A. Coleiro, A. Kouchner).
55 objects in the FOV of ANTARES, ~ 35 events expected
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Conclusions

@ Giant radio galaxies: X-ray properties and radio connection

» The X-ray—radio core correlation is consistent with the efficient
branch of the fundamental plane; the sources are likely
powered by a radiatively efficient accretion flow.

> In most sources, the current activity level traced by the X-ray
emission is higher than expected from the radio; this is
consistent with a restarting activity scenario.

@ Absorption properties

» At the zeroth order, unified models apply to radio galaxies and
radio-quiet AGNs in a similar way; however, there are currently
no strong evidences for heavily absorbed radio galaxies.

» X-ray obscured sources have a higher detection fraction of 21
cm HI absorption, suggesting a link between HI and X-ray
absorption structures; however, preliminary results from new
GMRT observations might point to a more complex scenario.

» Deep silicate absorption is found in a few X-ray/21 cm
absorbed sources, indicating obscuration in the host galaxy.
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