

12th INTEGRAL Conference 1st AHEAD Gamma-ray Workshop

INTEGRAL looks AHEAD to Multi-Messenger Astrophysics 11-15 February 2019 - Geneva, Switzerland



# Stochastic acceleration in blazars

## Andrea Tramacere



12-February 2019

## Outline

- Phenomenological signatures
- setup of Theory/Numerical framework for stochastic acceleration
- Self-consistent reproduction of Long Term Trends
- numerical modeling, numerical fit (no eyeball fit) no analytical approximations

#### SPECTRAL DISTRIBUTION OF HBLs



#### acceleration signature in the Es-vs-b trend

Tramacere+2007.2009





Long term (overall 13 years of data) Ep-vs-b trends hint for an acceleration dominated scenario

#### acceleration signature in the E<sub>S</sub>-vs-L<sub>s</sub> trend



#### Hard spectra s<-

#### Mrk 501 1997 Flare

#### Massaro & Tramacere +2006



| <b>a</b> <i>s</i> <<2.00    | S             | = 1 +           | $\frac{t_{acc}}{2t_{esc}}$ |
|-----------------------------|---------------|-----------------|----------------------------|
| best fit pars               |               |                 |                            |
| best-fit parameters<br>Name |               | best-fit err +  | <br> <br>                  |
| В                           | +1.072178e-01 | +5.436622e-03   |                            |
| N                           | +4.585348e+00 | +4.756569e-01   | Ì                          |
| R                           | Frozen        | Frozen          | Ì                          |
| beam_obj                    | +2.450884e+01 | +7.642113e-01   |                            |
| gamma0_log_parab            | +6.609649e+04 | +7.427709e+03   |                            |
| gmax                        | +1.860044e+14 | +5.881595e+14   |                            |
| gmin                        | +1.404527e+03 | +2.198648e+02   |                            |
| r                           | +7.513452e-01 | +5.059815e-02   |                            |
| s                           | +1.638026e+00 | +3.170384e-02   |                            |
| z_cosm                      | Frozen        | Frozen          |                            |
|                             | *****         | ·               | <br>*:<br>=:               |
| best-fit parameter<br>Name  |               | e  best-fit err | : +                        |

| Name             | best-fit value | best-fit err + |
|------------------|----------------|----------------|
| В                | +3.065207e-01  | +1.159567e-02  |
| N                | +1.079944e+02  | +7.375385e+00  |
| R                | Frozen         | Frozen         |
| beam_obj         | +2.722013e+01  | +5.889626e-01  |
| gamma0_log_parab | +6.493888e+04  | +5.410315e+03  |
| gmax             | +1.902146e+06  | +2.216666e+02  |
| gmin             | +3.003970e+02  | +5.686711e+01  |
| r                | +6.778727e-01  | +3.526656e-02  |
| S                | +1.321307e+00  | +1.844825e-02  |
| z_cosm           | Frozen         | Frozen         |
|                  |                |                |

## Fermi I+Fermi II Mrk 421 2006

LP+PL spectra Synch index~[1.6-1.7]=>s~[2.2-2.4]



Lemoine, Pelletier 2003







#### Mrk 421 2009 data

data from Abdo et al 2011 Fermi-LAT+Magic coll.

#### Ippl/plc p-value= 6.8E-6

best fit pars

| B   +;<br>N   +<br>R   F;<br>beam_obj   +; | est-fit Value<br>2.096016e-02  <br>1.152143e-01  <br>rozen  <br>2.619674e+01 | best-fit err +<br>+5.744998e-05<br>+1.545857e-03<br>Frozen |
|--------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------|
| N   +<br>R   F<br>beam_obj   +             | 1.152143e-01  <br>rozen                                                      | +1.545857e-03                                              |
| R F<br>beam_obj +                          | rozen                                                                        |                                                            |
| beam_obj +                                 |                                                                              | Frozen                                                     |
|                                            | $2 6106740 \pm 01$                                                           |                                                            |
|                                            | 2.0190/40-01                                                                 | +8.501912e-02                                              |
| gamma0_log_parab   +                       | 1.884210e+05                                                                 | +1.891713e+03                                              |
| gmax +                                     | 3.492780e+08                                                                 | +6.130842e+08                                              |
| gmin   +                                   | 1.929302e+03                                                                 | +2.109472e+01                                              |
| r +                                        | 1.681768e+00                                                                 | +3.032664e-02                                              |
| s   +                                      | 2.509224e+00                                                                 | +2.902511e-03                                              |
| z_cosm F                                   | rozen                                                                        | Frozen                                                     |

chisq=39.696427, chisq/red=1.890306 null hypothesis

The log-parabola origin: physical insight

# The origin of the log-parabolic shape: statistical derivation



systematic



Log-Parabolic representation



$$\log(n(\gamma)) \propto \frac{(\log \gamma - \mu)^2}{2\sigma_{\gamma}^2} \propto r \ [\log(\gamma) - \mu]^2$$

$$\frac{\partial n(\gamma,t)}{\partial t} = \frac{\partial}{\partial \gamma} \left\{ - \left[ S(\gamma,t) + D_A(\gamma,t) \right] n(\gamma,t) + D_p(\gamma,t) \frac{\partial n(\gamma,t)}{\partial \gamma} \right\} - \frac{n(\gamma,t)}{T_{esc}(\gamma)} + Q(\gamma,t)$$

analytical solution for:  $D_p \sim \gamma q, q=2$ 

#### "hard-sphere" case no cooling

Melrose 1968,

$$n(\gamma, t) = \frac{N_0}{\gamma \sqrt{4\pi D_{p0} t}} \exp\left\{-\frac{\left[\ln(\gamma/\gamma_0) - (A_{p0} - D_{p0})t\right]^2}{4D_{p0} t}\right\}$$

#### set-up of the accelerator



#### spectral trends

single flare



## Pile-up and hard spectra

#### q=2, R=10<sup>15</sup> cm, B=0.1 G, t<sub>inj</sub>=t<sub>D</sub>=10<sup>4</sup> s

Mrk 501 1997



s<<s<sub>Fl~</sub>2.3

## Pile-up and hard spectra



Summary of Stochastic signatures from self-consistent modeling

|                    | Acceleration<br>dominated                 | Equilibrium                                      |
|--------------------|-------------------------------------------|--------------------------------------------------|
| curvature<br>trend | curvature decreasing<br>trend <i>b-Ep</i> | curvature stable or<br>increasing<br>(r~7,b~1.3) |
| spectral<br>shape  | LPPL or LP                                | PL+exp-cutoff<br>or<br>Maxwellian                |

#### spectral trends

## multiple flares and population trends

## $E_s$ - $b_s$ X-ray trend and $\gamma$ -ray predictions



- •data span 13 years, both flaring and quiescent states
- •We are able to reproduce these long-term behaviours, by changing the value of only one parameter  $(D_p)$
- •for q=2, curvature values imply distribution far from the equilibrium (b~[1.0-0.7])
- •More data needed at GeV/TeV, curvature seems to be cooling-dominated
- •Similar trend observed in GRBs (Massaro & Grindlay 2001)

| $L_{\text{inj}} (E_s - b_s \text{ trend})$ | $(erg s^{-1})$    | $5 \times 10^{39}$                   |
|--------------------------------------------|-------------------|--------------------------------------|
| $L_{\text{inj}}$ ( $E_s$ – $L_s$ trend)    | ) (erg $s^{-1}$ ) | $5 \times 10^{38}, 5 \times 10^{39}$ |
| q                                          |                   | 2                                    |
| $t_A$                                      | (s)               | $1.2 \times 10^{3}$                  |
| $t_{D_0} = 1/D_{P0}$                       | (s)               | $[1.5 \times 10^4, 1.5 \times 10^5]$ |
| T <sub>inj</sub>                           | (S)               | 104                                  |
| $T_{\rm esc}$                              | (R/c)             | 2.0                                  |

## $E_s$ - $L_s$ X-ray trend and $\gamma$ -ray predictions



• the  $E_s-S_s$  ( $E_s-L_s$ ) relation follows naturally from that between  $E_s$  and  $b_s$ 

•the low  $L_{inj}$  objets (Mrk 501 vs Mrk 421) reach a larger  $E_S$ , compatibly with larger  $\gamma_{eq}$ 

- •Mrk 421 MAGIC data on 2006 match very well the Synchrotron prediction with simultaneous X-ray data
- •the average index of the trend  $L_s \propto E_S^{\alpha}$  with  $\alpha \sim 0.6$ , is compatible with the data, and with a scenario in which a typical constant energy  $(L_{inj} \times t_{inj})$  is injected for any flare (jet-feeding problem), whilst the peak dynamic is ruled by the turbulence in the magnetic field.

#### https://jetset.readthedocs.io/en/latest/

https://github.com/andreatramacere/jetset/archive/stable.tar.gz

- to get the beta release . write to •
- <u>andrea.tramacere@gmail.com</u>
  - andrea.tramacere@unige.ch



#### Jets SED modeler and fitting Tool

Author: Andrea Tramacere

*JetSeT* is an open source C/Python framework to reproduce radiative and accelerative processes acting in relativistic jets, allowing to fit the numerical models to observed data. The main features of this framework are:

- handling observed data: re-binning, definition of data sets, bindings to astropy tables and quantities definition of complex numerical radiative scenarios: Synchrotron Self-Compton (SSC), external Compton (EC) and EC against the CMB
- Constraining of the model in the pre-fitting stage, based on accurate and already published phenomenological trends. In
  particular, starting from phenomenological parameters, such as spectral indices, peak fluxes and frequencies, and spectral
  curvatures, that the code evaluates automatically, the pre-fitting algorithm is able to provide a good starting
  model,following the phenomenological trends that I have implemented. fitting of multiwavelength SEDs using both
  frequentist approach (iminuit) and bayesian MCMC sampling (emcee)
- Self-consistent temporal evolution of the plasma under the effect of radiative and accelerative processes, both first order and second order (stochastic acceleration) processes.

#### 🗐 v: latest -



# backup slides

#### injection term

$$L_{inj} = \frac{4}{3}\pi R^3 \int \gamma_{inj} m_e c^2 Q(\gamma_{inj}, t) d\gamma_{inj} \quad (erg/s)$$



### Mrk 501 2014 Flare MAGIC paper (submitted)

| <pre>model parameters:   Name</pre>                                                                                                             | Туре                                                                                                                                                                                                                                                                                         | Units                                                                                                                         | value                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B<br>N<br>R<br>alpha_pile_up<br>beam_obj<br>gamma0_log_parab<br>gamma_inj<br>gamma_pile_up<br>gmax<br>gmin<br>r<br>ratio_pile_up<br>s<br>z cosm | <pre>magnetic_field<br/>electron_density<br/>region_size<br/>turn-over-energy<br/>beaming<br/>turn-over-energy<br/>turn-over-energy<br/>turn-over-energy<br/>high-energy-cut-off<br/>low-energy-cut-off<br/>spectral_curvature<br/>turn-over-energy<br/>LE_spectral_slope<br/>redshift</pre> | G<br>  cm^-3<br>  cm<br> <br>  Lorentz-factor<br>  Lorentz-factor<br>  Lorentz-factor<br>  Lorentz-factor<br>  Lorentz-factor | +3.000000e-01<br>+2.360060e+00<br>+1.551851e+01<br>+1.000000e+00<br>+1.000000e+01<br>+1.300000e+03<br>+5.000000e+03<br>+4.000000e+03<br>+4.000000e+03<br>+6.100000e+00<br>+7.000000e-18<br>+1.280000e+00<br>+3.364200e-02 |

Mrk 501 lppl\_high\_B -8.5 -9.0  $\log(vF_v)$  (erg cm<sup>-2</sup> s<sup>-1</sup>) -10.0 -11.0 -11.0 -11.5 -12.024 26 18 20 22 loa(ν) (Hz) 5 res 20 18 22 24 26

log(v) (Hz)

cont. single injection (Stawarz&Petrosian 2009) not compatible with MW data



double cospatial injection compatible with data





### blazars in a nutshell



## IC cooling and equilibrium



 $U_{ph}$  (R= 1x10<sup>13</sup> cm) >>  $U_{ph}$  (R= 1x10<sup>15</sup> cm)

IC prevents higher energies in more compact accelerators (if all the parameters are the same) **Impact on rapid TeV variability!** 



# effect of the turbulence index q



## effect of the turbulence index q

B=1.0 G, t<sub>D0</sub>=10<sup>3</sup>, R=5x10<sup>15</sup> cm



# log-parabola is not a "new" model...

#### **KARDASHEV 1962**

320

N. S. KARDASHEV

increases c

The quanti

to expansion the quantit

sistently p

creasing E

and conver

correspond

 $= KE_0^{-\gamma}$  is

 $E_{\min} \leq E_0$ 

initial con

For th

==

At first, for simplicity, we consider the effect of each process viewed separately on the energy spectrum, and then the simultaneous effect of two or more processes.

Spectra of Isolated Processes

1. Random and Systematic Acceleration. The kinetic equation is

$$\frac{\partial N}{\partial t} = \alpha_1(t) \frac{\partial}{\partial E} \left( E^2 \frac{\partial N}{\partial E} \right) - \alpha_2(t) \frac{\partial}{\partial E} (EN) .$$

Let the energy distribution be specified, at each instant of time  $t_0$ , by the  $\delta$ -function in the neighborhood of energy  $E_0$ :

and

$$N(E, 0) = N_0 \delta(E - E_0) \qquad \qquad \overset{E_{\max}}{\underset{0}{\int}} k$$

$$\int_{0}^{\infty} N(E, 0) dE = N_0. \qquad \qquad \overset{E_{\max}}{\underset{E_{\min}}{\int}} k$$

Then, utilizing the techniques developed, e.g., in [13],



#### Tramacere+2011

#### statistical approach

$$n(\gamma) = \frac{N_0}{\gamma \sigma_{\gamma} \sqrt{2\pi}} \exp\left[\frac{-\left(\ln(\gamma/\gamma_0) - n_s \left[\ln\bar{\varepsilon} - \frac{1}{2}(\sigma_{\varepsilon}/\bar{\varepsilon})^2\right]\right)^2}{2n_s (\sigma_{\varepsilon}/\bar{\varepsilon})^2}\right].$$

#### diffusion equation approach

$$n(\gamma, t) = \frac{N_0}{\gamma \sqrt{4\pi D_{p0} t}} \exp\left\{-\frac{[\ln(\gamma/\gamma_0) - (A_{p0} - D_{p0})t]^2}{4D_{p0} t}\right\}$$

$$r \propto \frac{1}{D_{p0}t} \rightarrow \left( D_{p0} \propto \left( \frac{\sigma_{\varepsilon}}{\overline{\varepsilon}} \right)^2 \right)$$

# The curvature *r* is inversely proportional to $t => n_s$ and $D_p => \sigma_{\varepsilon}$

log-parabolic shape natural consequence of dispersion



$$\log(n(\gamma)) \propto \frac{(\log \gamma - \mu)^2}{2\sigma_{\gamma}^2} \propto r \ [\log(\gamma) - \mu]^2$$

# b distributions and q



#### self-consistent approach: acc+cooling



- •δB/B<<1 , B~[0.01-1.0] G
- • $\beta_A \sim 0.1-0.5$
- • $\lambda_{max} < R = > ~ 10^{[9-15]} \text{ cm}$
- • $\rho_{g} < \lambda_{max} = > \gamma_{max} \sim 10^{7.5}$



### Flare: acc.-dominated-vs-equil.,R= 10<sup>15</sup> cm, q=2



mono energetic inj., t<sub>inj</sub><<t<sub>acc</sub>, t<sub>inj</sub><<t<sub>sim</sub>
we measure r@peak as a function of the time
two phase: acceleration-dominated, equilibrium
equil. distribution:

•f=1 for q=2 and S, full TH, or full KN
•equil. curv.: r~2.5, (r<sub>3p</sub>~6.0) for TH or full KN
•equil. curv.: r~0.6, (r<sub>3p</sub>~4.0) for TH-KN

$$n(\gamma) \propto \gamma^2 \exp\left[\frac{-1}{f(q,\dot{\gamma})} \left(\frac{\gamma}{\gamma_{eq}}\right)^{f(q,\dot{\gamma})}\right]$$



BH  $R \le c \Delta t / (1 + z)$ R~R<sub>g</sub> • M<sub>BH</sub> disk/jet feeding





## *E<sub>s</sub>-b<sub>s</sub>* X-ray trend and $\gamma$ -ray predictions



- data span 13 years, both flaring and quiescent states
- •We are able to reproduce these long-term behaviours, by changing the value of only one parameter (q)
- •curvature values imply distribution far from the equilibrium (b~[0.7-1.0])
- •More data needed at GeV/TeV, curvature seems to be cooling-dominated

| $L_{\text{inj}} (E_s - b_s \text{ trends})$                    | l) (erg s <sup>-1</sup> ) | $  5 \times 10^{39}$                 |
|----------------------------------------------------------------|---------------------------|--------------------------------------|
| $L_{\text{inj}}$ ( $E_s$ – $L_s$ trend) (erg s <sup>-1</sup> ) |                           | $5 \times 10^{38}, 5 \times 10^{39}$ |
| q                                                              |                           | [3/2, 2]                             |
| $t_A$                                                          | (S)                       | $1.2 \times 10^{3}$                  |
| $t_{D_0} = 1/D_{P0}$                                           | <b>(s)</b>                | $[1.5 \times 10^4, 1.5 \times 10^5]$ |
| $T_{ m inj}$                                                   | <b>(s)</b>                | $10^4$                               |
| $T_{\rm esc}$                                                  | (R/c)                     | 2.0                                  |

### HBLs case



### acceleration signature in the Es-vs-Ls trend



# **SEDs evolution**



#### Strong cooling



•Full bands curvature related to EED broadness, acceleration signature

•High energy band, dominated by cooling, moving towards the equilibrium



## Moving Ep above 30 keV

Low cooling

#### Strong cooling

3.0



## Effect o B on SEDs



## Rapid Variability





### acceleration signature in the Es-vs-Ls trend







#### $D_p$ -driven trends $t_{D=}[1.5x10^4-1.5x10^5]$ , $L_{inj}$ =const.





# effect of $\lambda_{max}$ , $\lambda_{coher}$

