Stochastic acceleration in blazars

Andrea Tramacere

Outline

- Phenomenological signatures
- setup of Theory/Numerical framework for stochastic acceleration
- Self-consistent reproduction of Long Term Trends
- numerical modeling, numerical fit (no eyeball fit) no analytical approximations

SPECTRAL DISTRIBUTION OF HBLs

acceleration signature in the Es-vs-b trend

Ep-vs-b, different scenarios

11 years of data:
PKS 0548-322,1H1426+418,
Mrk 501 ,1ES1959+650,

PKS2155-34

Long term (overall 13 years of data) Ep-vs-b trends hint for an acceleration dominated scenario

acceleration signature in the Es-vs-Ls trend

long-trend main drivers

$\gamma_{3 p} \uparrow$ and $\mathrm{n}(\gamma 3 \mathrm{p}) \downarrow \quad=>\quad \alpha<1.5$ acceleration+energy conservation

- $B \rightarrow>\alpha=2.0, \quad$ incompatible as - $\delta \rightarrow>\alpha=4$ long-trend main driver

Hard spectra ${ }_{s \ll 2.00}$

Mrk 50I 1997 Flare

Massaro \&Tramacere +2006

best fit pars

best-fit parameters:

Name	best-fit value	best-fit err
B	+1.072178e-01	+5.436622e-03
N	+4.585348e+00	+4.756569e-01
R	Frozen	Frozen
beam_obj	+2.450884e+01	+7.642113e-01
gamma0_log_parab	+6.609649e+04	+7.427709e+03
gmax	+1.860044e+14	+5.881595e+14
gmin	+1.404527e+03	+2.198648e+02
r	+7.513452e-01	+5.059815e-02
S	+1.638026e+00	+3.170384e-02
z_cosm	Frozen	Frozen

**

best-fit parameters
Name | best-fit value| best-fit err +|

B	$+3.065207 \mathrm{e}-01$	$+1.159567 \mathrm{e}-02$
N	$+1.079944 \mathrm{e}+02$	$+7.375385 \mathrm{e}+00$
R	Frozen	Frozen
beam_obj	$+2.722013 \mathrm{e}+01$	$+5.889626 \mathrm{e}-01$
gamma0_log_parab	$+6.493888 \mathrm{e}+04$	$+5.410315 \mathrm{e}+03$
gmax	$+1.902146 \mathrm{e}+06$	$+2.216666 \mathrm{e}+02$
gmin	$+3.003970 \mathrm{e}+02$	$+5.686711 \mathrm{e}+01$
r	$+6.778727 \mathrm{e}-01$	$+3.526656 \mathrm{e}-02$
s	$+1.321307 \mathrm{e}+00$	$+1.844825 \mathrm{e}-02$
z_cosm	Frozen	Frozen

Fermi I+Fermi II

LP+PL spectra

Synch index [1.6-I.7]=>s~[2.2-2.4]

Lemoine,Pelletier 2003

Mrk 42I 2006

dof=21
chisq=39.696427, chisq/red=1.890306 null hypothesis
best fit pars

best-fit parameters:		
Name	best-fit value	best-fit err +
B	+2.096016e-02	+5.744998e-05
N	+1.152143e-01	+1.545857e-03
R	Frozen	Frozen
beam_obj	+2.619674e+01	+8.501912e-02
gamma0_log_parab	+1.884210e+05	+1.891713e+03
gmax	+3.492780e+08	+6.130842e+08
gmin	+1.929302e+03	+2.109472e+01
r	+1.681768e+00	+3.032664e-02
S	+2.509224e+00	+2.902511e-03
z_cosm	Frozen	Frozen

Mrk 42I 2009 data

data from Abdo et al 2011
Fermi-LAT+Magic coll.

lppl/plc p-value= $=6.8 \mathrm{E}-6$

The log-parabola origin: physical insight

The origin of the log-parabolic shape: statistical derivation

fluctuation
$\varepsilon=\bar{\varepsilon}+\chi$
ε_{i} is a R.V.
$\gamma_{n_{s}}=\gamma_{0} \Pi_{i=1}^{n_{s}} \varepsilon_{i}$
C.L. Theorem multipl. case

systematic

log-normal distribution
Log-Parabolic representation

$$
\log (n(\gamma)) \propto \frac{(\log \gamma-\mu)^{2}}{2 \sigma_{\gamma}^{2}} \propto r[\log (\gamma)-\mu]^{2}
$$

$$
\frac{\partial n(\gamma, t)}{\partial t}=\frac{\partial}{\partial \gamma}\left\{-\left[S(\gamma, t)+D_{A}(\gamma, t)\right] n(\gamma, t)+D_{p}(\gamma, t) \frac{\partial n(\gamma, t)}{\partial \gamma}\right\}-\frac{n(\gamma, t)}{T_{\text {esc }}(\gamma)}+Q(\gamma, t)
$$

analytical solution for:

$$
D_{p} \sim \gamma q, q=2
$$

"hard-sphere" case no cooling
Melrose 1968,

$$
n(\gamma, t)=\frac{N_{0}}{\gamma \sqrt{4 \pi D_{p 0} t}} \exp \left\{-\frac{\left[\ln \left(\gamma / \gamma_{0}\right)-\left(A_{p 0}-D_{p 0}\right) t\right]^{2}}{4 D_{p 0} t}\right\}
$$

set-up of the accelerator

hard-sphere $q=2$

$$
\mathrm{r}_{\mathrm{g}}, \lambda, \gamma
$$

spectral trends

single flare

Pile-up and hard spectra

$\mathrm{q}=2, \mathrm{R}=10^{15} \mathrm{~cm}, \mathrm{~B}=0.1 \mathrm{G}, \mathrm{t}_{\mathrm{inj}}=\mathrm{t}_{\mathrm{D}}=10^{4} \mathrm{~s}$
Mrk 50I 1997

Massaro \&Tramacere +2006
s in agreement with $s=1+\frac{t_{a c c}}{2 t_{e s c}}$

$$
\begin{aligned}
& s \sim 1.6 \\
& r \sim 0.7-0.8 \ll r_{e q} \sim 6
\end{aligned}
$$

s<<S FI~ 2.3

Pile-up and hard spectra

Mrk 501 2014 Flare MAGIC paper (submitted)

Summary of Stochastic signatures from self-consistent modeling

Acceleration dominated

Equilibrium

curvature curvature decreasing trend trend b-Ep
spectral LPPL or LP shape
curvature stable or increasing
(r~7,b~1.3)

PL+exp-cutoff
or
Maxwellian

spectral trends

multiple flares and population trends

$E_{s}-b_{s}$ X-ray trend and γ-ray predictions

-data span i3 years, both flaring and quiescent states
-We are able to reproduce these long-term behaviours, by changing the value of only one parameter (D_{p})

- for $q=2$, curvature values imply distribution far from the equilibrium ($\mathrm{b} \sim[1.0-0.7]$)
-More data needed at $\mathrm{GeV} / \mathrm{TeV}$, curvature seems to be cooling-dominated
-Similar trend observed in GRBs (Massaro \& Grindlay 2001)

$L_{\text {inj }}\left(E_{S}-b_{s}\right.$ trend $)\left(\mathrm{erg} \mathrm{s}^{-1}\right)$	5×10^{39}
$L_{\text {inj }}\left(E_{S}-L_{s}\right.$ trend $)\left(\mathrm{erg} \mathrm{s}^{-1}\right)$	$5 \times 10^{38}, 5 \times 10^{39}$
q	
t_{A}	$(\mathrm{~s})$
$t_{D_{0}}=1 / D_{P 0}$	$(\mathrm{~s})$
$T_{\text {inj }}$	(s)
$T_{\text {esc }}$	(R / c)

$E_{s}-L_{s} X$-ray trend and γ-ray predictions

- the $E_{s}-S_{s}\left(E_{s}-L_{s}\right)$ relation follows naturally from that between E_{s} and b_{s}
\bullet the low $L_{i n j}$ objets (Mrk 501 vs Mrk 421) reach a larger E_{s}, compatibly with larger γ_{eq}
- Mrk 421 MAGIC data on 2006 match very well the Synchrotron prediction with simultaneous X-ray data
- the average index of the trend $\mathrm{L}_{s} \alpha \mathrm{E}_{5} \alpha$ with $\alpha \sim 0.6$, is compatible with the data, and with a scenario in which a typical constant energy ($\mathrm{L}_{\text {inj }} \times \mathrm{t}_{\text {ini }}$) is injected for any flare (jet-feeding problem), whilst the peak dynamic is ruled by the turbulence in the magnetic field.
https://jetset.readthedocs.io/en/latest/
https://github.com/andreatramacere/jetset/archive/stable.tar.gz
to get the beta release
- andrea.tramacere@gmail.com
write to
- andrea.tramacere@unige.ch

JetSeT Documentation

installation
user guide
code documentation (API)
Source

Jets SED modeler and fitting Tool
Author: Andrea Tramacere

JetSeT is an open source C/Python framework to reproduce radiative and accelerative processes acting in relativistic jets, allowing to fit the numerical models to observed data. The main features of this framework are:

- handling observed data: re-binning, definition of data sets, bindings to astropy tables and quantities definition of complex numerical radiative scenarios: Synchrotron Self-Compton (SSC), external Compton (EC) and EC against the CMB
- Constraining of the model in the pre-fitting stage, based on accurate and already published phenomenological trends. In particular, starting from phenomenological parameters, such as spectral indices, peak fluxes and frequencies, and spectral curvatures, that the code evaluates automatically, the pre-fitting algorithm is able to provide a good starting model,following the phenomenological trends that I have implemented. fitting of multiwavelength SEDs using both frequentist approach (iminuit) and bayesian MCMC sampling (emcee)
- Self-consistent temporal evolution of the plasma under the effect of radiative and accelerative processes, both first order and second order (stochastic acceleration) processes.

Temp. ev. of the plasma

backup slides

injection term

$$
L_{i n j}=\frac{4}{3} \pi R^{3} \int \gamma_{i n j} m_{e} c^{2} Q\left(\gamma_{i n j}, t\right) d \gamma_{i n j} \quad(e r g / s)
$$

systematic term

$$
S(\gamma, t)=-C(\gamma, t)+A(\gamma, t)
$$

cooling term
$C(\gamma)=\left|\dot{\gamma}_{\text {synch }}\right|+\left|\dot{\gamma}_{\mathrm{IC}}\right| \quad A(\gamma)=A_{p 0} \gamma, t_{A}=\frac{1}{A_{0}}$

Turbulent magnetic field \longrightarrow
momentum diffusion term

$$
W(k)=\frac{\delta B\left(k_{0}^{2}\right)}{8 \pi}\left(\frac{k}{k_{0}}\right)^{-q}
$$

Mrk 50I 2014 Flare

 MAGIC paper (submitted)| model parameters: | | | |
| :---: | :---: | :---: | :---: |
| Name | Type | Units | value |
| B | magnetic_field | G | +3.000000e-01 |
| N | electron_density | cm^-3 | +2.360060e+00 |
| R | region_size | cm | +1.551851e+01 |
| alpha_pile_up | turn-over-energy | | +1.000000e+00 |
| beam_obj | beaming | | +1.000000e+01 |
| gamma0_log_parab | turn-over-energy | Lorentz-factor | +1.300000e+05 |
| gamma_inj | turn-over-energy | Lorentz-factor | +5.000000e+03 |
| gamma_pile_up | turn-over-energy | Lorentz-factor | +4.000000e+05 |
| gmax | high-energy-cut-off | Lorentz-factor | +1.000000e+07 |
| gmin | low-energy-cut-off | Lorentz-factor | +5.000000e+03 |
| r | spectral_curvature | | $+6.100000 \mathrm{e}+00$ |
| ratio_pile_up | turn-over-energy | | +7.000000e-18 |
| s | LE_spectral_slope | | +1.280000e+00 |
| z_cosm | redshift | | +3.364200e-02 |

cont. single injection (Stawarz\&Petrosian 2009) not compatible with MW data

double cospatial injection compatible with data

S vs IC

Tramacere+2011

Tramacere +20II

blazars in a nutshell

jet/disk

IC cooling and equilibrium

$\mathrm{R}=1 \times 10^{15} \mathrm{~cm}$

$\mathrm{R}=5 \times 10^{13} \mathrm{~cm}$

$U_{\text {ph }}\left(R=1 \times 10^{13} \mathrm{~cm}\right) \gg U_{\text {ph }}\left(R=1 \times 10^{15} \mathrm{~cm}\right)$
IC prevents higher energies in more compact accelerators (if all the parameters are the same) Impact on rapid TeV variability!

S vs IC

Tramacere+2011

Tramacere +20II

effect of the turbulence index q

$t_{a c c}$

effect of the turbulence index q

log-parabola is not a "new" model...

KARDASHEV 1962

At first, for simplicity, we consider the effect of each process viewed separately on the energy spectrum, and then the simultaneous effect of two or more processes.

Spectra of Isolated Processes

1. Random and Systematic Acceleration.

The kinetic equation is

$$
\frac{\partial N}{\partial t}=\alpha_{1}(t) \frac{\partial}{\partial E}\left(E^{2} \frac{\partial N}{\partial E}\right)-\alpha_{2}(t) \frac{\partial}{\partial E}(E N)
$$

Let the energy distribution be specified, at each instant of time t_{0}, by the δ-function in the neighborhood of energy E_{0} :
and

$$
N(E, 0)=N_{0} \delta\left(E-E_{0}\right)
$$

$$
\int_{0}^{\infty} N(E, 0) d E=N_{0}
$$

$$
\int_{E_{\min }}^{E_{\max }} K
$$

$$
\begin{array}{r}
\int_{F_{\min }}^{11 a x} H \\
=
\end{array}
$$

$$
=
$$

Then, utilizing the techniques developed, e.g., in [13], we may find that

$$
X^{\prime}(E, t)=\frac{N_{0}}{\sqrt{\pi} E 2 \sqrt{a_{1}}} e^{-\left(\ln \frac{E_{0}}{E}+a_{1}+a_{2}\right)^{2} / 4 a_{1}}
$$

where
increases c The quant: to expansi the quanti sistently p creasing E and conve, correspond For th $=\mathrm{KE}_{0}^{-\gamma}$ is $E_{\text {min }} \leq E_{0}$ initial con
where

statistical approach
$n(\gamma)=\frac{N_{0}}{\gamma \sigma_{\gamma} \sqrt{(2 \pi)}} \exp \left[\frac{-\left(\ln \left(\gamma / \gamma_{0}\right)-n_{s}\left[\ln \bar{\varepsilon}-\frac{1}{2}\left(\sigma_{\varepsilon} / \bar{\varepsilon}\right)^{2}\right]\right)^{2}}{2 n_{s}\left(\sigma_{\varepsilon} / \bar{\varepsilon}\right)^{2}}\right]$

$$
\log (n(\gamma)) \propto \frac{(\log \gamma-\mu)^{2}}{2 \sigma_{\gamma}^{2}} \propto r[\log (\gamma)-\mu]^{2}
$$

diffusion equation approach
$n(\gamma, t)=\frac{N_{0}}{\gamma \sqrt{4 \pi D_{p 0} t}} \exp \left\{-\frac{\left[\ln \left(\gamma / \gamma_{0}\right)-\left(A_{p 0}-D_{p 0}\right) t\right]^{2}}{4 D_{p 0} t}\right\}$

Tramacere+2011

b distributions and q

both flaring and quiescent seem to be far from equilibrium b eq. [0.7-1.0] (if full KN or S)

compatible with b compatible wit $q=5 / 3$
$q=2$ far from equilibrium constraint on B, and duration, or $\mathrm{TH} / \mathrm{KN}$ constraint on B

self-consistent approach: acc+cooling

$t_{D}=\frac{1}{D_{p 0}}\left(\frac{\gamma}{\gamma_{0}}\right)^{2-q}$
$t_{D A}=\frac{1}{2 D_{p 0}}\left(\frac{\gamma}{\gamma_{0}}\right)^{2-q}$
set-up of the accelerator
$\cdot R \sim 10^{13}-10^{15} \mathrm{~cm}$
$\cdot \delta B / B \ll 1, B \sim[0.01-1.0] G$

- $\beta_{A} \sim 0.1-0.5$
$\cdot \lambda_{\max }<R=>\sim 10[9-15] \mathrm{cm}$
- $\rho_{g}<\lambda_{\text {max }}=>\gamma_{\text {max }} \sim 10^{7.5}$
observed values
$E_{p 1} / E_{p 2} \sim 5 \quad \longrightarrow \quad t_{D A} \sim<5 \mathrm{ks}$
$\Delta \mathrm{t} \sim$ few ks $\quad t_{D} \sim<10 \mathrm{ks}$
values compatible with Tammi \& Duffy 2009
$\longrightarrow t_{D \sim<10^{4}} \mathrm{ks}$

Flare: acc.-dominated-vs-equil.,R=1015 cm, $q=2$

-mono energetic inj., $t_{\text {inj }} \ll t_{\text {acc }}, t_{\text {inj }} \ll t_{\text {sim }}$
-we measure r@peak as a function of the time
-two phase: acceleration-dominated, equilibrium -equil. distribution:

$$
n(\gamma) \propto \gamma^{2} \exp \left[\frac{-1}{f(q, \dot{\gamma})}\left(\frac{\gamma}{\gamma_{e q}}\right)^{f(q, \dot{\gamma})}\right]
$$

-f=1 for $q=2$ and S, full TH, or full KN -equil. curv.: r~2.5, ($r_{3 p \sim 6.0)}$ for TH or full KN -equil. curv.: $\mathbf{r} \sim 0.6$, $\left(r_{3 p} \sim 4.0\right)$ for TH-KN

Jet
$R<=c \Delta t \delta /(1+z)$

- $\gamma-\gamma$ transparency
-B
- γ max

BH

$$
R<=c \Delta t /(I+z)
$$

- $M_{B H}$ -disk/jet feeding

Jet

$R<=c \Delta t \delta /(I+z)$

- $\gamma-\gamma$ transparency

$E_{s}-b_{s}$ X-ray trend and γ-ray predictions

-data span i3 years, both flaring and quiescent states
-We are able to reproduce these long-term behaviours, by changing the value of only one parameter (q)
-curvature values imply distribution far from the equilibrium (b~[0.7-1.0])
-More data needed at $\mathrm{GeV} / \mathrm{TeV}$, curvature seems to be cooling-dominated

$L_{\text {inj }}\left(E_{s}-b_{s}\right.$ trend $)\left(\mathrm{erg} \mathrm{s}^{-1}\right)$	5×10^{39}	
$L_{\text {inj }}\left(E_{s}-L_{s}\right.$ trend) $\left(\mathrm{erg} \mathrm{s}^{-1}\right)$	$5 \times 10^{38}, 5 \times 10^{39}$	
q	$[3 / 2,2]$	
t_{A}	$(\mathrm{~s})$	1.2×10^{3}
$t_{D_{0}}=1 / D_{P 0}$	(s)	$\left[1.5 \times 10^{4}, 1.5 \times 10^{5}\right]$
$T_{\text {inj }}$	(s)	10^{4}
$T_{\text {esc }}$	(R / c)	2.0

HBLs case

acceleration signature in the Es-vs-Ls trend

Tramacere+2009
long-trend main drivers

- $B->\alpha=2.0, \quad$ incompatible as
- $\delta->\alpha=4$ long-trend main driver

SEDs evolution

Strong cooling

- Full bands curvature related to EED broadness, acceleration signature
- High energy band, dominated by cooling, moving towards the equilibrium

Moving Ep above 30 keV

Low cooling

\mathbf{B}	$0.2 / 1.0$	G
\mathbf{R}	3×10^{15}	cm
$\mathbf{L}_{\mathbf{i n j}}$	5×10^{39}	$\mathrm{erg} / \mathrm{s}$
\mathbf{q}	2	
$\mathbf{t}_{\mathbf{A}}$	1.2×10^{3}	s
$\mathbf{t}_{\mathbf{D}}$	$2.2-\times 10^{4}$	s

Strong cooling

-SEDs are rescaled in order that the brightest state matches the flux of $10-09 \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}[2-\mathrm{I} 0] \mathrm{keV}$
-during the flares, the fluxes range in
$\sim 1 \times 10^{-10}-10^{-9} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$

- I ks integration time

Effect o B on SEDs

Rapid Variability

acceleration signature in the E_{s}-vs-$-\mathrm{L}_{s}$ trend

Tramacere A., et al.2009A\&A... 501
long-trend main drivers

- $B->\alpha=2.0, \quad$ incompatible as
- $\delta->\alpha=4$ long-trend main driver

D_{p}-driven trends $\left.\quad t_{D=[} 1.5 \times 10^{4}-1.5 \times 10^{5}\right]$, Linj=const.

effect of $\lambda_{\text {max }}, \lambda_{\text {coher }}$

synch. peak curvature

