Linking theory and observations: status and open questions

CEERS JWST/NIRCam F115W F150W F200W F277W F356W F410M F444W NASA/STSCI/CEERS/TACC/S. Finkelstein/M. Bagley/Z. Levay

rachel somervílle

Center for Computational Astrophysics

54th Saas-Fee Advanced Course Galaxies and Black Holes in the First Billion Years as seen by the JWST

outline

- Pop III star formation
- bridging theory and observations
 - modeling the SEDs of (unattenuated) stellar populations
 - modeling nebular emission from HII regions
 - modeling dust attenuation and emission
 - estimating physical quantities from SED fitting
- challenges and puzzles in the FBY revealed by JWST

formation of the first stars

$$\begin{split} \mathrm{H} + \mathrm{e}^{-} &\rightarrow \mathrm{H}^{-} + \gamma, \\ \mathrm{H}^{-} + \mathrm{H} &\rightarrow \mathrm{H}_{2} + \mathrm{e}^{-}. \end{split}$$
$$\begin{split} \mathrm{H} + \mathrm{H}^{+} &\rightarrow \mathrm{H}_{2}^{+} + \gamma, \\ \mathrm{H}_{2}^{+} + \mathrm{H} &\rightarrow \mathrm{H}_{2} + \mathrm{H}^{+}. \end{split}$$

huge thanks to R. Schneider for sharing slides from her KITP review on this topic

Klessen & Glover 2023, ARAA

when and where did the first stars form?

at z \approx 30 in primordial dark matter **mini-halos** M \approx M(T_{vir} \approx 10³ – 10⁴ K) \approx 10⁶ M_{sun}

Tegmark et al. (1997)

additional important processes: radiation fields

 $J_{x021} = J_{x21}(E_0 = 0.2 \text{ keV})$ units of $10^{-21} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1} \text{ sr}^{-1}$

see also Gnedin 00; Haiman+00; O'Shea & Norman 08; Johnson+13; Regan+20; Venkatesan+01; Jeon+14; Xu+16; Ricotti+16; Ricotti+21; Correa-Magnus+24

impact of relative streaming velocities on first stars

Abel et al. 2001; Bromm et al. 1999; 2002; Yoshida et al. 2003

the initial mass function of Pop III stars

Klessen & Glover 2023, ARAA

- large variation in the mass range (resolution,
- integration time, etc)
- approximately Log Flat distribution
- \rightarrow top-heavy wrt present-day IMF

strongest existing constraints from stellar archaeology in nearby Universe

IMF transition in metal-poor environments

Chon+2021

Pop III formation may continue into the epoch that can be observed with JWST!

Klessen RS, Glover SCO. 2023 Annu. Rev. Astron. Astrophys. 61:65–130

take-away points

- Pop III stars likely start forming in mini-halos with masses ~few 10⁵-10⁶ M_{sun} at z~25-30
- Pop III stars likely form in multiples/clusters; the masses are determined by radiation feedback
- the IMF of Pop III stars is still uncertain but is likely 'top heavy' relative to the local IMF
- Pop III may continue to occur in rare pockets (perhaps offset from luminous galaxies) down to redshifts as low as z~6 – possibly detectable with JWST?

K. Iyer

two types of SED modeling: forwards and backwards

- forward modeling: *predict SED* based on physical properties/conditions from a physicsbased simulation (such as numerical hydro/SAM) coupled with appropriate modeling tools
- backwards modeling: estimate the underlying *physical properties* (e.g. m_{*}, SFR, m_{dust}) of a real galaxy by fitting an idealized model to the observed SED

stellar population synthesis

Bruzual & Charlot 2003

SSP models: primary challenges/uncertainties

- stellar initial mass function
- isochrones/stellar evolution physics
- stellar atmosphere models
- abundance ratios
- binary/multiple star physics

emission from the ISM

fairly good agreement with line ratios and line luminosity functions at low and intermediate redshifts

Hirschmann+2017; 2019; 2022; 2023 see also Wilkins et al. 2020,2022; Garg et al. 2023

slide adapted from M. Hirschmann

see poster by L. Scharré

simulations with non-equilibrium thermo-chemistry + on the fly radiative transfer

line ratios observable with JWST are very sensitive to conditions in the ISM and hence to details of star formation & feedback physics implementations in sims

e.g. [Ο ΙΙΙ] λ5007 / [Ο ΙΙ] λλ3727 C IV λλ1550/[C ΙΙΙ] λλ1908 [ΟΙΙΙ]4363/5007

(Katz et al. 2024)

RAMSES-RTZ → MEGATRON

Katz 2022

dust attenuation

-wide spread in attenuation curves even in local galaxies

-attenuation curve parameters correlated with each other

-attenuation curve parameters are correlated with physical properties of the galaxy

-all three of the above are seen empirically in observations AND predicted from dust+radiative transfer simulations of galaxies

Salim et al. 2018; Salim & Narayanan 2020

hints of redshift evolution in average attenuation curves

Markov et al. 2024

beware: dust attenuation of stellar continuum and nebular emission need NOT be the same...

Salim et al. 2018

dust+RT simulations

- most cosmo sims do not explicitly model the formation and destruction of dust, so a dust-to-metal ratio is assumed
 - solve RT equation along line of sight
- mostly in post-processing (some OTF RT simulations now coming)

RT codes commonly used for galaxy sims:

powderday https://github.com/dnarayanan/powderday Narayanan et al. 2021 RADMC-3D (Dullemond et al. 2012) Hyperion (Robitaille 2011) ART2 (Li et al. 2020)

UV	NIR	FIR	sub-mm	dust T		
5 kpc log $M_{\text{star}} = 9.5$	5 kpc log $M_{\text{star}} = 9.5$	5 kpc log $M_{\text{star}} = 9.5$	5 kpc log M _{star} = 9.5	14 16 18 20 22 24 26 T _{dust} [K]		
0.32 µm rest-frame TNG50 z = 2: ID = 246343	1.6μm rest-frame TNG50 z = 2: ID = 246343	300 µm rest-frame TNG50 z = 2: ID = 246343	850 µm rest-frame TNG50 z = 2: ID = 246343	Dust temperature TNG50 z = 2: ID = 246343		
$\frac{5 \text{ kpc}}{6} \log M_{\text{star}} = 9.9$	$\frac{5 \text{ kpc}}{1000 \text{ kpc}} = 9.9$	$\frac{5 \text{ kpc}}{1000 \text{ kpc}} = 9.9$	$\frac{5 \text{ kpc}}{1000 \text{ kpc}} = 9.9$	14 16 18 20 22 24 26 28 T _{dust} [K]		
$0.32\mu m$ rest-frame TNG50 z = 2: ID = 113349	$1.6\mu m$ rest-frame TNG50 z = 2: ID = 113349	300µm rest-frame TNG50 z = 2: ID = 113349	850 µm rest-frame TNG50 z = 2: ID = 113349	Dust temperature TNG50 z = 2: ID = 113349		
<u>5 kpc</u> log M _{star} = 10.4	<u>5 kpc</u> log M _{star} = 10.4	<u>5 kpc</u> $\log M_{\text{star}} = 10.4$	5 kpc $\log M_{\text{star}} = 10.4$	15 20 25 30 35 40 T _{dust} [K]		
0.32 µm rest-frame TNG50 z = 2: ID = 154635	1.6μm rest-frame TNG50 z = 2: ID = 154635	300μm rest-frame TNG50 z = 2: ID = 154635	850 µm rest-frame TNG50 z = 2: ID = 154635	Dust temperature TNG50 z = 2: ID = 154635		
$\frac{5 \text{ kpc}}{1000 \text{ kpc}} = 10.5$	<u>5 kpc</u> log M _{star} = 10.5	5 kpc log M _{star} = 10.5	5 kpc log M _{star} = 10.5	15 20 25 30 35 40 T _{dust} [K]		
0.32 µm rest-frame TNG50 z = 2: ID = 127580	1.6μm rest-frame TNG50 z = 2: ID = 127580	300μm rest-frame TNG50 z = 2: ID = 127580	850μm rest-frame TNG50 z = 2: ID = 127580	Dust temperature TNG50 z = 2: ID = 127580		
$5 \text{ kpc} \log M_{\text{star}} = 10.6$	$5 \text{ kpc} \log M_{\text{star}} = 10.6$	$5 \text{ kpc} \log M_{\text{star}} = 10.6$	$\frac{5 \text{ kpc}}{100 \text{ M}_{\text{star}}} = 10.6$	14 16 18 20 22 24 26 28 30 T _{dust} [K]		
$0.32 \mu m$ rest-frame TNG50 z = 2: ID = 60750	$1.6\mu m$ rest-frame TNG50 z = 2: ID = 60750	$300\mu m$ rest-frame TNG50 z = 2: ID = 60750	$850 \mu m$ rest-frame TNG50 z = 2: ID = 60750	Dust temperature TNG50 z = 2: ID = 60750		
Popping et al. 202						

Schreiber et al. 2018

 $S_{\nu} = M_{\text{dust}}^{\text{cont}} \bar{S}_{\nu}^{\text{cont}} + M_{\text{dust}}^{\text{PAH}} \bar{S}_{\nu}^{\text{PAH}}.$

a fast, flexible generalized pipeline for creating synthetic images and spectra from hydro simulations or semi-analytic models

Chris Lovell, Steve Wilkins ++

https://flaresimulations.github.io/synthesizer/

take away points

- nebular emission & effects of dust most commonly modeled in post-processing; some new simulations coming online with nonequilibrium thermo-chemistry & OTF radiation transport; models for dust formation + destruction
- simulations that do not resolve the multiphase ISM require sub-grid recipes to model nebular emission & dust

estimating physical parameters from SEDs

Johnson et al. 2021

Johnson et al. 2021

	Summary of Paramete	Table 2 rs, Hyperparameters, and Priors for Our Bagp	pipes SED Fitting		
Common Parameters					
Parameter	Prior/	Value (Min, Max)	Description		
Zphot	EAZY	-py Posterior PDF (±3σ)	Redshift		
SPS Model	G. Br	azual & S. Charlot (2003); BPASS v2.2.1	Stellar population synthesis model		
IMF	P. Kroupa (2001); default BPASS IMF		Stellar IMF		
Dust-law Parameterization	D. Calzetti et al. (2000), S. Salim et al. (2018)		Dust law		
	S. Chr	arlot & S. M. Fall (2000)			
A_V	Log-u	niform: (10 ⁻³ , 10); uniform (0, 6)	V-band attenuation (all stars)		
SFH	Log-n/	ormal; "continuity bursty"; delayed- τ	Star formation history		
$\log_{10}(M_{\star}/M_{\odot})$	Unifor	/m: (5, 12)	Surviving stellar mass		
Z_{\star}/Z_{\odot}	Log-w	niform: (0.005, 5); uniform (0, 3)	Stellar metallicity		
Z_{gas}/Z_{\odot}	Fixed	to Z _*	Gas-phase metallicity		
$\log_{10} U$	Uniform: $(-3, -1)$		Ionization parameter		
Model Specific Parameters					
Model	Parameter	Prior/Value (Min, Max)	Description		
Fiducial	t _{max}	Uniform: (10 Myr, 15 Gyr)	Age of Universe at peak SFR		
	FWHM	Uniform: (10 Myr, 15 Gyr)	FWHM of SFH		
Delayed-7 SFH	τ	Uniform: (10 Myr, 15 Gyr)	e-folding timescale		
-	Age	Log-uniform: (10 Myr, tuniv(zphot))	Time since SF began		
"Continuity Bursty"	$N_{\rm bins}$	Six bins (five fitted parameters)	First bin 0–10 Myr, SF begins at $z = 20$,		
Nonparametric SFH			others distributed equally in log10 lookback time		
	$d_{\log_{10}SFR}$	Student's t: $\nu = 2$, $\sigma = 1.0$	Ratio of \log_{10} SFR in adjacent bins, coupled by σ		
S. Charlot & S. M. Fall (2000)	n	Clipped normal: $\mu = 0.7$, $\sigma = 0.3$	Power-law slope of attenuation curve $(A \propto \lambda^{-n})$		
Dust Law		(0.3, 2.5)	For D. Calzetti et al. (2000) $n \approx 0.7$		
	η	clipped normal: $\mu = 2$, $\sigma = 0.3$ (1, 3)	$A_{V_{\star}}$ < 10 Myr/ A_V ratio between young and old stars		
S. Salim et al. (2018) Dust Law	δ	Clipped normal: $\mu = 0, \sigma = 0.1$ (-0.3, 0.3)	Deviation from D. Calzetti et al. (2000) slope		
	β	Uniform (0, 5)	Strength of 2175 Å bump		
BPASS SPS Model			No additional components		
Uniform A _V Prior			No additional components		
Uniform Z, Prior			No additional components		

Notes. Parameters and priors for other iterations can be assumed to be the same as given for the "fiducial" bagpipes run unless otherwise specified. The top section of the table lists parameters that are common to all of our Bagpipes models, whereas the lower section gives the model-specific parameters for each of our chosen configurations.

Harvey et al. 2024

validation method 1: how robust are results to different priors/different modeling assumptions?

Harvey et al. 2024; see also Tacchella et al. 2022; Topping et al. 2022 validation method 2: apply SED fitting method to SED's from simulations where 'truth' known \rightarrow stellar masses can be off by ~1 dex

Narayanan et al. 2024

summary: estimating physical parameters from SEDs

- stellar mass uncertainties may be up to 1 dex at high-z
- results dependent on SFH priors, choice of parametric vs. non. para SFH
- uncertainties/degeneracies associated with modeling of dust & nebular emission are not well quantified
- dust mass estimates sensitive to assumed temperature
- bottom line: not only are these parameter estimates potentially highly uncertain, we do not even know how large the systematic uncertainties are!

What have we learned about galaxy formation in the first billion years from JWST: insights and puzzles

JWST puzzle #1: evolution of the number density of bright galaxies to z~14 is much shallower than expected

Finkelstein et al. 2024

proposed solutions to early galaxy problems

- 1) eject dust, top heavy IMF, AGN contribution to UV, bursty – make galaxies brighter
- 2) higher star formation efficiency/weaker feedback – make more stars

e.g. Ferrara+2023; Shen+2023; Yung+2024; Trinca+2023; Dekel+2023; Li+2024

AGN contribution, IMF evolution?

CAT semi-analytic models

Trinca et al. 2023

impact of burstiness on UV LFs

Shen et al. 2023

predicted SF burstyness in FIRE has a non-trivial effect on the bright end of the UVLF to z~12

bursty star formation also has an impact on clustering

Sun et al. 2024

hint that some/most physics-based models are under-producing stellar masses of most massive galaxies at z>6, but uncertainties are v. large

Harvey et al. 2024 see also Weibel+24

	DRAGONS	 Illustris	 FFB ($\varepsilon_{max} = 0.2$)
	DREaM	 JAGUAR	 FFB ($\varepsilon_{max} = 1$)
	EAGLE	 SC SAM	 Bluetides
	FIRE-2	 Universe Machine	 SC SAM GUREFT
	FLARES	 DELPHI	

Glazebrook et al. 2024

a Parent sample: H α and [O III] emitters \bigcirc Subsample: DSFGs \oplus Ref. 12 sources: z_{phot} only **b**

Xiao, Oesch et al. 2024

predictions from pre-launch `Santa Cruz' SAMs implemented in new high-z optimized GUREFT N-body simulation suite

10^{-1} z = 9z = 10z = 11z = 12 10^{-2} 10^{-3} Mpc⁻³] 10 basekenn nofb basegkb2 PRIMER (z = 11) 10^{-5} EPOCHS (z = 9)GLASS (z = 10)HUDF-P2 (z = 10-11.5) PRIMER (z = 12.5)HUDF-P2 (z = 8-10)PRIMER (z = 10)CEERS full (z = 9.7-13) EPOCHS (z = 12.5) CEERS full (z = 8.5-9.7)EPOCHS (z = 10.5) NGDEEP Ep1 (z = 9.5-12) HUDF-P2 (z = 11.5-13) ī 10^{-6} |ADES|| 25 (z = 9.8)IADES R24 (z = 11.5 - 13.5 [N mag 10^{-1} z = 13z = 14z = 15z = 17 10^{-2} 10^{-3} Φ 10^{-4} 10^{-5} 👗 CEERS full (🛃 JADES L25 (z JADES R24 (z 10^{-6} _ 🎍 JADES L25 (z = 12.8) JADES L2 -24-24-16 -18 -20 -24-16-18 -20-16-18 -20-22-22-18-22Rest-frame UV magnitude rss, Yung et al.; + in prep [bright end limited by volume of our biggest N-body box...]

galactic winds switched off

NO DUST

surface density of gas

Morishita et al. 2024

galaxy sizes at z=11: semi-analytic model

observations: 9<z<13 Robertson+23; Finkelstein+23; Casey+23

 $r_{gal} = 2\lambda R_{halo}$

1 NIRCAM pixel z=9 z=13

rss, Yung et al. in prep

NEW density modulated "cloud/cluster" SF model

$$\epsilon_{*,\text{cl}} = \frac{\Sigma_{\text{cl}} / \Sigma_{\text{crit}}}{(1.0 + \Sigma_{\text{cl}} / \Sigma_{\text{crit}})}$$

$$\Sigma_{\rm crit} = \frac{\langle \dot{p}/m_* \rangle}{\pi G}$$

rss+ in prep

$$\Sigma_{cl} = \mathbf{c} \Sigma_{gal}$$

 $m_{\text{dense}} = \mathbf{f}_{\text{dense}} m_{\text{gas}} = N_{\text{cl}} M_{\text{cl}}$

Grudic et al. 2018

in units of free fall time

in Myr

cloud surface density

cloud surface density

solid gray lines: empirical fit to cloud lifetimes in cloud-scale simulations

$$\langle SFR \rangle_{\text{cloud}} = \frac{\epsilon_{*,\text{cl}} M_{\text{cl},0}}{t_{\text{cl}}}$$

rss + in prep

cloud lifetime

cluster based model with density modulated SFE:

NO DUST

good agreement with observations to z~14 with 50% of SF in 'clusters'

fraction of gas in dense clumps/clusters

rss, Yung et al. in prep

more early star formation: better agreement with stellar mass function estimates?

rss et al. in prep

Fujimoto et al. 2024 'cosmic grapes'

2 P15W + P15W P27W P36W + P44W b P15W P27W P44W

Mowla et al. 2024 'Firefly sparkle'

fraction of SF in 'super star clusters' ~50% consistent with lensed objects @ z~6-10

Adamo et al. 2024 'cosmic gems'

puzzle #2: Where is the dust?

extremely blue UV slopes at z>10 leave little (if any) room for dust reddening evidence for lower and lower A_{UV} at z>10

but significant dust reservoirs in place by 750 Myr after Big Bang (z~7)

Sommovigo et al. 2022; see also Dayal et al. 2023

proposed solutions

- lower A_{UV} for a given m_{dust}: dust composition/grain size distribution was different at high-z, leading to *less efficient attenuation* (Narayanan et al. 2024)
- SNae dust yields are lower than we thought, and/or dust is destroyed by SNae shocks more efficiently than is generally assumed (R. Schneider et al.)
- dust is ejected by radiation pressure above a critical sSFR (Ferrara et al. 2022; 2023, 2024)

Santa Cruz SAM incorporating density dependent cloudscale SFE+

dust ejected when sSFR above critical value (Ferrara+23)

rss in prep

puzzle #3: emission line EW & line ratios: SF burstyness, abundances, abundance ratios, electron densities

quantifying bursty SF

Endsley et al. 2024

quantifying bursty SF

evidence for diverse/bursty SFH at $z^{\sim}6 \rightarrow$ exciting to push to higher z!

~ SFR(10 Myr)/SFR(100 Myr)

Endsley et al. 2024

some (but not all) z>6 galaxies have high N/O, very different from local HII regions but similar to globular clusters

supermassive stars? bursty star formation? (Kobayashi & Ferrara 2024)

Fujimoto et al. 2023

cautionary note: commonly used line ratios used as metallicity indicators may evolve strongly with redshift/ISM conditions

summary/take-away points

- JWST puzzle #1: more than expected UVbright (massive?) galaxies at z>10
 - top heavy IMF, bursty star formation, more efficient SF/weaker feedback
- JWST puzzle #2: where is the dust?
 - evolving attenuation law/grain size distribution, lower dust yields, dust ejection
- JWST puzzle #3: emission lines
 - SF burstyness, chemical abundances & abundance ratios

- what new simulations need to be done to make progress towards solving these puzzles?
- what new observations need to be done to make progress towards solving these puzzles?

extra slides