





#### AGN Science with XRISM Stéphane Paltani





#### Active Galactic nuclei



- Supermassive black hole  $10^6 10^{10} M_{\odot}$
- Surrounded by complex distribution of matter, that is responsible for the overall AGN emission
  - Accretion disk
  - Corona
  - Dusty torus
  - Radial structures
  - Jet

- $\rightarrow$  UV/optical emission
- $\rightarrow$  X-ray emission
- $\rightarrow$  Absorption/Reflection
- $\rightarrow$  Absorption
- $\rightarrow$  Non-thermal emission
- X-rays are an important probe of the matter distribution
  - Spectroscopy with XRISM will provide numerous breakthroughs

#### AGN Structure





Hickox & Alexander 2018

# XRISM Science Case for AGN

- Point sources: Focusing on spectroscopy with Resolve
  - Xtend important for the continuum, background
- Outflows
  - Warm absorber, but GV...
  - Ultra-fast outflows
- Reflection
  - Fe complex
  - Compton shoulder

### X-ray Absorption



Absorption results from :

- Column density N<sub>H</sub> (cm<sup>-2</sup>)
- **Ionization** parameter (erg cm s<sup>-1</sup>):

$$\xi = \frac{L}{nR^2}$$

- $N_{\rm H}$ , L and  $\xi$  are observables
- Degeneracy between *n* and *R*
- Velocity of ionized absorption can be measured!
  - Requires high resolution
- Accurate modeling requires <u>L(E)</u>, not just total <u>L</u>
  - cloudy, xstar, pion

#### Warm Absorber



NGC 3783 / ROSAT PSPC

Turner et al. 1993



In general, warm absorber can be continuous: absorption measure distribution:



#### High-ionization Warm Absorbers



- High-ionization warm absorbers are mostly visible in the Fe K line complex
- They might also have the fastest velocities

• This is a major science case for XRISM

#### Ultra-Fast Outflows (UFOs)



Tombesi et al. 2010

#### 3C 111 (*v*~0.04c)



#### **Outflow Unification**



### Why do we care?



Fiore et al. 2017

AGN can stop star formation if about 5% of its luminosity is deposited in the ISM



Fabian 2016

#### Energetics

- Outflowing mass:  $\frac{dM}{dt} = \Omega N_{\rm H} m_{\rm p} R v$
- Kinetic power (Luminosity):  $L_{\rm kin} = \frac{1}{2} \frac{\mathrm{d}M}{\mathrm{d}t} v^2 \propto \Omega N_{\rm H} R v^3$
- Determination of  $L_{kin}$  requires:  $\Omega$  , R
  - Need to break n R degeneracy  $\xi = \frac{L}{nR^2}$
  - Covering factor  $\Omega$  ?

### Density–Distance Degeneracy



J. Hoormann https://jhoormann.github.io/blog/blog-1/



- Reverberation
- But it does not work for absorption
- Metastable states depends on density
  - Large monitoring campaign
  - Complex modeling of the density evolution of specific ions
  - But does not depend on astronomical distances!

| Component | Distance | Density $(10^9 \text{ m}^{-3})$ |
|-----------|----------|---------------------------------|
| С         | >71      | <0.28                           |
| D         | >4.7     | <10.6                           |
| E         | >4.6     | <1.7                            |

Kaastra et al. 2012

#### PDS 456

P Cygni profile



*v* ~0.35 c

Nardini et al. 2015



- P Cygni profile implies a covering factor  $\Omega$  compatible with  $4\pi$
- N<sub>H</sub> ~ 6.9 10<sup>23</sup> cm<sup>-2</sup>
- NuSTAR crucial to fix the continuum
- *R* from variability of absorption feature ~100 *R*<sub>G</sub>
- d*M*/d*t* ~ 10 M<sub>☉</sub> yr<sup>-1</sup>
- *L*<sub>kin</sub> ~ 2 10<sup>46</sup> erg s<sup>-1</sup>, 20% of *L*<sub>bol</sub>



Nardini et al. 2015

# Observer Reflection

- Scattering on electrons
  - Compton
  - Rayleigh
  - Dust
- Photo-electric absorption
- Fluorescence



Pexmon; Nandra et al. 2007

#### **Ionized Reflection**



xillver; García et al. 2011



Crummy et al. 2006

#### **Relativistic Ionized Reflection**



García et al. 2014

relxill; Dauser et al. 2016

#### **Relativistic Profile**



 $3 - 10 R_{G}$ 



# Line Width and Shape



Distance

- NGC 4388: Bright, edge-on AGN
- Width seem compatible with BLR

Precise shape indicates location of reflection

7.5

Energy (keV)

#### Compton Shoulder



#### **Compton Shoulder**



Dimopoulos et al. 2024

#### RefleX simulations: https://www.astro.unige.ch/reflex/

Paltani & Ricci 2017

#### Circinus Galaxy



Andonie et al. 2022

### Conclusion

- XRISM will allow major advances in the understanding of AGN even with GV closed thanks to its high resolution and high sensitivity around 7 keV
  - Ultra-fast outflows
    - Precise characterization
    - Energetics
    - Launch mechanism
  - Fluorescence
    - AGN geometry from a few *R*<sub>G</sub> to several pc
    - Velocities