spleaf.term.ESKernel#
- class spleaf.term.ESKernel(sig, rho, coef_la=1.0907260149419182, mu=1.326644517327145)#
The Exponential-sine (ES) kernel is a rank 3 twice mean-square differentiable kernel approximating the squared-exponential (SE) kernel.
The exact SE kernel is written as
\[k(\Delta t) = \sigma^2 \exp\left(-\frac{1}{2} \left(\frac{\Delta t}{\rho}\right)^2\right),\]while the ES kernel approximates it with
\[k(\Delta t) = \sigma^2 \exp\left(-\lambda \Delta t\right) \left(1 + \frac{1-2\mu^{-2}}{3} \left(\cos(\mu\lambda\Delta t) - 1\right) + \mu^{-1}\sin(\mu\lambda\Delta t)\right),\]with \(\lambda = \frac{c_\lambda}{\rho}\).
- Parameters:
- sigfloat
Amplitude (std).
- rhofloat
Scale.
- coef_lafloat
Coefficient \(c_\lambda\). The default value is chosen such as the deviation from the SE kernel is below 0.9%.
- mufloat
Coefficient \(\mu\). The default value is chosen such as the deviation from the SE kernel is below 0.9%.
Methods
eval
(dt[, series_id])Evaluate the kernel at lag dt.
set_conditional_coef
(*args, **kwargs)Set the coefficients used for the conditional computations.