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ABSTRACT 

The Observatory of Geneva has designed, built and tested in collaboration with ESO a calibrator system based on a 
Fabry-Perot (FP) interferometer to explore its potential in the calibration of radial velocity (RV) spectrographs. 
Today, the RV technique has pushed the planet detection limits down to super-earths but the reach the precision 
required to detect earth-like planets it is necessary to reach a precision around 1cm s-1. While a significant part of 
the error budget is the incompressible photon noise, another part is the noise in the wavelength calibration of the 
spectrograph. It is to address this problem that we have developed this new device. We have obtained exciting 
results with the calibrator system demonstrated 10 cm s-1 stability over one night and 1 m s-1 over 60 days. By 
further improving the injection system we are aiming at a 1 m s-1 repeatability over the long term. 
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1. INTRODUCTION 
The radial velocity (RV) technique is so far the most powerful extra-solar planets discovery tool. With the current 
precision achieved by RV of 69 cm.s-1, it has pushed the planet detection limits down to super-earths (see p. ex. [1] 
and [2]). However, to detect earth-like planets it is necessary to reach a precision around 1cm.s-1, i.e. a repeatability 
of 3 10-11. This implies lifting some instrumental limitations, among them the wavelength calibration. While some 
groups are working hard developing sophisticated laser system for this calibration (see [4], [5], [6] and [7]), the 
Observatory of Geneva has designed, built and tested in collaboration with ESO a calibrator system based on a 
Fabry-Perot interferometer to explore its potential to improve the wavelength calibration of RV spectrographs. 
Unlike the Thorium-Argon lamps used today [3], this device allows the production of optimally and regularly 
spaced calibration lines covering all orders of the spectrograph. The stability of this system has already shown to 
be on par or better than the Th-Ar lamps and it now offered as an observing mode on ESO’s HARPS RV 
spectrograph 

2. DESIGN 
2.1 General aspects 

The requirements applicable to the calibrator have been listed in detail in [8]. In short, what is important is that the 
Fabry-Perot interferometer is highly stable, that it covers the full wavelength range of the spectrograph, that its 
lines are not resolved at the spectrograph resolution and that there are as many of them as possible in the spectral 
range. Of course, for stability, the environment has to be thermally very stable and the index of refraction in the 
gap constant. 

The calibration spectrum is used separately from the stellar spectrum to define the “wavelength solution” of the 
spectrograph (no mixing). The spectrograph has a doubled fiber input and produces 2 spectra on the detector: fiber 
A for the stellar spectrum (calibrated in wavelength by the calibrator) and fiber B for the reference spectrum which 
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The flux per extracted pixel at the peak of the echelle order is shown for a 40 s exposure with the FP system in the 
present configuration. A RV precision of about 4 cm s-1 per frame is obtained on a single frame, which is about 
twice a good as using the ThAr for the simultaneous drift measurement. However, this flux is about a factor of 10 
lower than the one obtained with the Xe-lamp, which has an larger etendue which fills the calibration fiber better. 

By optimizing the setup a value below 2 cm s-1 may be reached. In particular, the blue flux should be improved by 
increasing the source power and by using a blue-balancing filter. In the present situation, the orders below number 
10 are not used for the drift computation. 

 
Figure 5: Peak flux per extracted pixel as a function of the order. The results were obtained using the SC laser source 

and an exposure time of 40 s.. 

The finesse F = Δλ/δλ (distance of two neighboring lines divided by the line width of a line) and the free spectral 
range of the FP etalon have been first measured in laboratory by scanning the etalon’s effective gap with air 
pressure and a laser. Then full spectral range was characterized with HARPS. These results have been presented in 
[8]. 

Once deconvolved by the instrumental profile of HARPS, the measurements show that the effective finesse of the 
FP is 4.3 instead of the design value of 6. 

3.2 Short-term stability 

We have tested the short-term stability by performing long series of Th- Ar and FP exposures (ThAr on fiber A, FP 
system on fiber A) and by computing the respective drifts independently. Figure 6 shows the drift from one 
exposure to the other as computed by the Th-Ar lamp and the FP system, as well as the difference of both to 
remove possible instrumental drifts. 

For the Th-Ar alone we obtain a dispersion of about 0.19 m s-1 rms which should be compared to about 0.09 m s-1 
pure photon-noise error. For the FP system we obtain 0.176 m s-1 rms dispersion, to be compared to 0.06 m s-1 
photon noise. For the difference of both, we end up with a photon noise of 0.11 m s-1 and a measured dispersion of 
0.14 m s-1. The dispersion of the difference is well below the square root of the quadratic sum of the individual 
drift measurements of 0.26 m s-1, demonstrating that both sources track a ‘real’ instrumental’ drift. On the other 
hand, the difference between the photon noise and the measured dispersion leaves the room for a 0.08 m s-1 
additional dispersion, which is not ‘seen’ by at least one of the fibers (or better sources). We suspect here a residual 
drift of the FP system or the ThAr sources (heating, instabilities, etc.) or very small instabilities of the light 
injection which do not affect both sources and fibers in the same way. 

Currently, in HARPS, the thorium lamp is tuned to balance lifetime versus flux. In an exposure of 40 s, which is 
the (minimum) nominal exposure time for a wavelength-calibration, the precision level obtained is of the order of 
7 cm s-1. For the FP system, when used with the Xe-lamp and a ‘2007’ balancing filter, a precision of typically 
2 cm s-1 is obtained in a single exposure of 40 s. 



 

 

 
Figure 6: Drift measurement over 7 hours to test the short term performance of the FP system. Th-Ar drift in blue, FP 

drift in red and differential drift between Th-Ar and FP in green. X-axis in minutes of time, Y-axis in m/s. 

3.3 Long term stability 

The long-term stability was tested in a similar way as the short-term stability. This time, however, the drift was 
computed with respect to a reference frame at the beginning of the two-month period. Frames were taken every 5 
days. The idea was to monitor possible long-term drifts of the FPCS with respect to the ThAr2 lamp. 

Figure 7 shows the results. Over the 2 months from March 24 to May 24, 2011, both Th-Ar and FP system drifted 
by about 4 m s-1, reproducing most likely a real drift of the spectrograph. Relative to each other, the drift was 
smaller that 0.5 m s-1 at the end of the period. This latter value shows clearly that the long-term drift of the FP 
system cannot be larger than typically 1 m s-1 over 60 days, and must be thus below the specified 0.1 m s-1 per 
night. 

On the other hand we observe that the differential drift has attained values up to 2 m/s. It is not clear where this 
comes from. Again, we suspect small instabilities of the light injection which do not affect both sources and fibers 
in the same way, but we cannot exclude effects of any of the sources (FPCS or heating effects of the ThAr lamp). It 
should be note, however, that the differential drift is monitored with respect the same reference frame, and that 
therefore, we do not have to expect drift measurement errors of the same magnitude on a night-to-night basis, for 
which we have measured values of typically of 0.2 m s-1 rms. 

 
Figure 7: Drift measurements over 60 days to test the long-term performances of the FPCS. Horizontal ticks are tens 

of days. Vertical ticks are m/s 



 

 

4. ON-SKY TESTS AND OPERATIONS 
In order to test the on sky performance we have observed, during the ‘Sousa’ mission in March 2011, two well-
known targets. In order to compare the radial-velocity results, we have observed both targets in their standard 
modes (usually used modes). The first target, HD 85512, is a moderately bright stable star with one known planet. 
Usually, this target is observed in ‘simultaneous Thorium’ mode. The second star, HD 128621 or alpha Cen B, is 
very bright (Mv =1.3). Because of its brightness the frame reaches almost saturation in 15 s. The high flux level on 
the object fiber was observed to produce contamination of the simultaneous Th-Ar on fiber B, which in turn 
introduced errors of the order of 1 to 2 m s-1 on the drift measurement. Therefore this target is observed as ‘OBJA’, 
i.e.without simultaneous Th-Ar on fiber B. 

The results in terms of radial velocity are shown in Figure 8 and Figure 9, respectively. It shall be noted that the 
long-term variation on HD 85512 are due to the low-mass planetary companion. Nevertheless, the some ‘high-
frequency’ variations are observed on the measurements using the Th-Ar which are not seen on the FP 
measurements. For alpha Cen B it shall be noted that the long-term variations are due to the fact that this star is 
part of a triple system. The short-term variations, the scatter during the night, are however due to stellar pulsation 
while the night-to-night variations are due to stellar jitter. 

The most important result is that in both cases neither a systematic offset nor a higher scatter is 
observed when using HARPS in the simultaneous Fabry-Perot system mode. 

 
Figure 8: Observations of the star HD 85512 over a ten-days period with the simultaneous reference technique using 

the Th-Ar (red) and the FP system  (blue). Radial-velocities are identical; although the dispersion seems to be 
even a little bit lower when using the FP system 

 



 

 

 
Figure 9: Observations of the star HD 128621 (alpha Cen B) over a ten-days period with the simultaneous reference 

technique using the FPCS (blue) and without any simultaneous reference at all. Radial-velocities are identical, 
indicating that the FPCS work well even on bright objects and that it does not introduce any systematic offset or 
error. 

5. CONCLUSION 
We have designed, built and tested a new Fabry-Perot Wavelength Calibration System and verified its 
performances in the frame of high-precision radial-velocity measurements with HARPS. 

The system has reached the objective to provide an alternative to the simultaneous Th-Ar. In particular it provides: 

- Photon precision on a single frame better than the Th-Ar, down to 1-2 cm s-1 

- nightly stability of better than the specified 10 cm s-1 

- a clean and uniform spectrum with no contamination of the object fiber in the blue wavelength region. 

The FP system is now fully operational on HARPS. Ts use and the results of the pipeline are completely 
‘transparent’ to the standard user 

The FP calibration system is conceptually very simple; it is portable and adaptable to almost any wavelength range. 
During our work we have realized that the FP system is actually a perfect candidate for a calibrator in the infrared, 
where good wavelength calibration sources are missing. We are actually working on such a system for the SPIROU 
NIR spectrograph for the CFHT. 

In future developments of FP systems we will try to improve the following parameters: 

1) Use FP-etalon coatings with low absorption and thermally contact the etalon to a heat sink 

2) Use even brighter sources and correct for better blue-red balance 

3) Use source with even longer lifetime 

Finally, we need mention that the wavelength stability of the system depends on the illumination of the calibration 
fibers. We have observed that different alignment of the source, the fibers or the lens, as well as vigneting inside 
the calibration light coupler box, can produce radial-velocity variation of several m s-1. The optical set-up of the 
coupler box was conceived together with HARPS and does not embed the latest knowledge we have We will seek 
to have the étendue of the calibration fiber overfilled by the étendue of the calibrating light, while coupling a 
maximum of light at the same time. 
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