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ABSTRACT   

SPHERE (Spectro-Polarimetric High-contrast Exoplanet Research) is a new instrument for the VLT aimed at the direct 
detection of exo-planets. It has received its first light in May 2014. ZIMPOL (Zurich Imaging Polarimeter) is the 
imaging polarimeter subsystem of the SPHERE instrument. It's capable of both high accuracy and high sensitivity 
polarimetry but can also be used as a classical imager. It is located behind an extreme AO system and a stellar 
coronagraph. ZIMPOL operates at visible wavelengths (600-900 nm) which is best suited to detect the very faint 
reflected and hence polarized visible light from extra solar planets. It has an instantaneous Field of View of 3 x 3 arcsec2 
(extendable to 8 arcsec diameter) with an angular resolution of 14 mili-arcsec. We discuss the results that are obtained 
from the full SPHERE-ZIMPOL system testing. In particular the optical, polarimetric and high contrast performance. 
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1. INTRODUCTION  

SPHERE-ZIMPOL[1][2][3] (Spectro-Polarimetric High Contrast Exoplanet Research - Zurich Imaging Polarimeter) is one 
of the first instruments which aim for the direct detection of reflected light from extra-solar planets. The instrument will 
search for direct light from old planets with orbital periods of a few months to a few years as we know them from our 
solar system. These are planets which are in or close to the habitable zone. 

The reflected radiation is generally polarized [4][5] and the degree of polarization may be particularly high at short 
wavelengths < 1μm due to Rayleigh scattering by molecules and scattering by haze particles in planetary atmospheres. 
For this reason the visual-red spectral region is well suited for planet polarimetry.  
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2.2 Coronagraphs 

The basic concept of the ZIMPOL coronagraph is a combination of a set of broad band classical Lyot coronagraphs and 
two monochromatic Four Quadrant Phase Masks[15] (4QPM) which provide a smaller inner working angle. The inner 
working angles of the 3 λ/D and 5 λ/D Lyot coronagraphs are at 47 and 78 mas respectively. The Lyot Coronagraph 
mask radii are specified at 600 nm. The inner working angle of the 4QPM masks are expected to be around 20 mas. 

The 5 λ/D Lyot mask in combination with broad band filters is foreseen to be the ZIMPOL main work horse for the 
initial planet detection given its robustness and photon collecting power. However, the planet contrast will improve 
rapidly with smaller star-planet separation and hence for follow up observation the coronagraphs with smaller working 
angle will be highly beneficial. 

 

Table 1 SPHERE-ZIMPOL coronagraph configurations that have been used for our tests 

Mask (ID) Suspension Field Stop Lyot Stop Transmission (ID) 
Lyot 3λ/D (CLC2) Substrate 1 x 1 asec2 56 % (STOP2) 
Lyot 5λ/D (CLC5) Suspended 1 x 1 asec2 78 % (STOP1) 

4Quadrant Phase Mask at 656 nm (4QPM1) Substrate 8 arcsec diameter 73 % (STOP3) 
4Quadrant Phase Mask at 820 nm (4QPM2) Substrate 8 arcsec diameter 73 % (STOP3) 

 
 
2.3 Spectral filters 

ZIMPOL is equipped with several filter wheels: one common wheel and two non-common wheels in each arm. Among 
many other filters the common wheel contains several Neutral Density (ND) filters to control the flux levels. The ND-
filters can be combined with the transmission filters in the non-common wheels. For our tests we have used the V 
(550/80), NR (655/60), NI (820/80) and VBB (750/290) filters where the numbers in brackets express the filter Central 
Wavelength/Bandwidth in nm.  
 

2.4 Single Difference – FLC switch 

The basic ZIMPOL principle [17]  for high-precision polarization measurements includes a fast polarization modulator 
with a modulation frequency in the kHz range, combined with a CCD [17][18] detector which demodulates the intensity 
signal in synchronism with the polarization modulation. The modulation frequency is much faster than the seeing 
variations and therefore ZIMPOL is able to capture two subsequent images with nearly identical turbulent phase screens. 
The polarization modulator and associated polarizer convert the degree-of-polarization signal into a fractional 
modulation of the intensity signal which is then measured in a demodulating detector system by a differential intensity 
measurement between the two modulator states. Each active pixel measures both the high and the low states of the 
intensity modulation and dividing the differential signal by the average signal eliminates essentially all gain changes, 
notably changes of atmospheric transparency or electronic gain drifts. 

 

2.5 Double Difference – HWP2 switch 

By rotating a half-wave plate (HWP2) far upstream in the optical path by 45◦, the sign of the incoming Stokes Q 
polarization is reversed. The instrumental aberrations, on the other hand, remain unchanged, resulting in the same 
background landscape as before. If the polarization images before and after the signal switching are subtracted from one 
another, the real polarization signals of the astronomical target add up constructively while the static background is 
canceled out.  

 



 
 

 

 

2.6 Turbulence Simulator 

A turbulence simulator is located at the optical entrance of the SPHERE bench. The turbulence is generated by a rotating 
phase screen [20]. For our tests we have used typical conditions of 0.85 arcsec seeing and 12.5 m/s windspeed that 
correspond to the ‘normal’ conditions that are foreseen at the VLT. The turbulence simulator is fed by a high energetic 
broad band source (Energetiq LDLS EQ-99FLC). This source produces a reasonable flat spectrum over the 500 – 790 
nm band and has peaks at 820 and 880 nm. 
 

2.7 Instrument Polarization 

To achieve high contrast performance the polarized input signal at the ZIMPOL detectors must be lower than about 1%. 
Therefore we have characterized the polarimetric behaviour of the turbulence simulator and the SPHERE optical bench 
[21]. The polarization Q/I measured at the ZIMPOL detectors is a combination of polarization introduced before HWP2 
(the Turbulence Simulator and mirror M4) and polarization introduced after HWP2 (the SPHERE optical components – 
in particular the derotator). To minimize the input polarization at the ZIMPOL detectors we have used a twofold 
strategy: 1) to minimize the input polarization introduced before HWP2 the HWP2 rotation is set at a Q/I zero crossing. 
The subsequent 45 degree HWP2 switch will also be at a zero crossing and 2) to minimize the input polarization 
introduced after HWP2 we have used the ZIMPOL internal Polarization Compensator. 

 

3. DATA REDUCTION 

The basic data reduction steps [24] are as follows. Bias is subtracted based on the pre –and overscan regions of the 
individual frames. The data is split in two datasets corresponding to the two HWP2 settings of the DD measurement. 
Each dataset is split up in sets of two consecutive frames and these sets are converted to Stokes Q taken into account the 
ZIMPOL CCD double phase mode operation. The Q frames are averaged and the end results are two final frames where 
each frame corresponds to a SD measurement. The two averaged SD frames are subtracted and divided by two to yield 
the final DD Stokes Q frame. An identical procedure is applied where the sets of two consecutive frames are converted 
to Stokes I taken into account the ZIMPOL double phase mode operation. This will yield the final DD Stokes I frame. 
From these two final DD frames it’s obvious to obtain the overall normalized Stokes Q/I frame. The contrast is estimated 
from the noise level in the final averaged images. We will present our results as plots of azimuthal statistics as function 
of radial separation from the PSF peak. The azimuthal statistics are calculated over a ring with the width of a resolution 
element λ/D, i.e. 3 pixels. 
 

4. PERFORMANCE MODELING 

The ZIMPOL performance simulations are done with the CAOS [22] problem solving environment and are extensively 
described in Thalmann[23]. The model data that we present in this study is obtained with the same simulation code. Both 
the CAOS model data and the experimental data is processed by the same data reduction software to produce the 
standard contrast curves as shown in Figure 2. This figure is obtained with input parameters according to Standard Case 
4 (SC4) as described by Thalmann[23] unless specified otherwise. We have used an integration time of about 1 hour to 
match the photon noise with our experimental data. The simulation of Figure 1 matches with our standard experimental 
test case: 
 

- Coronagraph:   Classical Lyot 5 λ/D 
- Filter:    NR 
- Atmospheric conditions: Seeing 0.85 arcsec and wind speed 12.5 m/s 
- Incoming polarization: Minimized 

 
The results as of Figure 2 shown a standard diagram with the azimuthally averaged PSF Intensity signal or the rms-noise 
calculated for the corresponding azimuthal ring. The graphs include from the top to bottom: 
 

- The azimuthally averaged non-coronagraphic PSF normalized to the peak signal. The azimuthal average is the 
mean of a ring with a width of a resolution element λ/D. 
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5.5 Input polarization 

One could imagine that the performance is reduced if the overall polarization of the incoming star light is polarized by 
interstellar matter or the telescope. With flat field illuminations free of strong intensity gradients it was demonstrated that 
highest sensitivity of 10-5 could only be achieved if the polarization of the illumination was less than about 1%[24].  

Measurements as of the standard test case but with different levels of input polarization were made. The limited 
performance of the standard test case is not caused by the polarization of the illuminating point source. We have checked 
this with high contrast tests inducing for the incoming light a high polarization of 3.2%. The measured double difference 
noise performance was not affected by this when compared to very low polarized (<0.2%) incoming light. One reason 
for not seeing an effect is that the polarimetric sensitivity is reduced in the high contrast tests due to the beam-shift effect 
acting on the speckle pattern of the PSF. Thus the effect of the polarized incoming light seems to be too small to be 
noticed in the high contrast data. We conclude that instrumental polarization is not critical, unless the polarimetric 
contrast can be further enhanced toward the previously anticipated goal value. 

 

6. DISCUSSION 

The high contrast measurement data as presented in the previous section strongly indicates that complex beamshifts 
effects have a strong impact on the SPHERE-ZIMPOL performance. In this section we will discuss several components 
that will introduce beam deviations between the two orthogonal linear polarization states in the optical path. 
 
6.1 HWP2 beamshifts 

In the SPHERE-ZIMPOL system we observe that HWP2 introduces a beamshift on the ZIMPOL CCDs of about 0.1 
pixel where 1 pixel has a size of 60×60 micron. We can attribute this beamshift to a cutting error of the HWP2 crystal, 
i.e. the crystal is not cut exactly parallel to the crystal optical axis. The dispersion angle α between the e –and o-beam is 
then given by 

tanሺߙሻ ൌ
ሺ݊ଶ െ ݊ଶሻtan	ሺ∆ߠሻ
݊ଶ  ݊ଶ݊ܽݐଶሺ∆ߠሻ

 
 

where Δθ is the cutting error and ne = 1.55051 and no = 1.54148 for Crystal Quartz at 670 nm. In the SPHERE-ZIMPOL 
optical system HWP2 is located 187 mm from the F/15 VLT input focal plane. The focal ratio of the camera lens on the 
ZIMPOL CCD is F/221. An angular beam deviation at the location of HWP2 will hence be magnified as a beam 
displacement on the ZIMPOL CCD by a factor of 187×(221/15) = 2755. 

We calculate that a beamshift of 0.1 pixel is caused by a cutting error of only 0.01 deg (36 asec). From a manufacturing 
point of view this seems like an excellent achievement. However, the location of HWP2 in the SPHERE optical setup 
magnifies the beam deviation by a factor of 2755. 

 

6.2 FLC beamshifts 

In the SPHERE-ZIMPOL system we observe that the FLC introduces a beamshift at the ZIMPOL CCDs of about 0.01 
pixel where 1 pixel has a size of 60×60 micron. The FLC consists of a thin layer of liquid crystals confined between two 
relatively thick and stiff fused silica substrates. Small glass spheres are used as spacers between the substrates to achieve 
a gap of about 3 micron thickness. We assume that the beamshift is caused by a small wedge angle in the liquid crystal 
gap. To estimate the wedge angle we proceed as follows. 

The beamshift of 0.01 pixel on the ZIMPOL CCD corresponds to about 1 micron. The FLC is located in a collimated 
beam just in front of the ZIMPOL camera lens with a focal length of about 1400 mm. Therefore the angular beam 
deviation introduced by the FLC will be about (1×10-3)/1400 = 7×10-7 radians and the wedge angle γ = (7×10-7)/Δn = 
6.5×10-6 radians ~ 1 arcsec. The FLC diameter is about 25 mm and so the error in the spherical spacers is in the order of 
25 × 6.5×10-6 ~ 0.15 micron. 
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6.5 Future work 

Currently we are working on a system model that assumes that what we see on the detector is not pure beamshift effect. 
Some components (HWP2, derotator, FLC) will split the unpolarized input beam in orthogonal polarized sub-beams. 
Components further downstream will again split a single sub-beam in two other sub-sub beams. So on the detector we 
see some superposition of sub-beams where each sub-beam is slightly displaced w.r.t. the other sub-beams and each sub-
beam might have different amplitude then the other sub-beams. In general the first element splits the beam in two sub-
beams, the second element splits the beam in four sub-beams, the third element splits the beam in eight sub-beams, etc. 
This would also explain why correcting for the beam shift only gives rather modest performance improvement. We 
assume that unpolarized input beam splits in many sub-beams and that the residual noise pattern is caused by 
superposition of sub-beams. We are working on component and system improvements and will use the model to quantify 
the impact on high contrast performance. 
 

7. CONCLUSIONS  

The SPHERE-ZIMPOL high contrast tests carried out in September 2013 at IPAG, Grenoble, France give a good 
assessment of the polarimetric contrast performance of ZIMPOL including the AO and coronagraph performance.  
 
We have demonstrated with realistic system tests that ZIMPOL reaches a contrast better than 10-6 using the foreseen 
polarimetric double-difference technique. This is at least one order of magnitude better than any previous high contrast 
polarimetry published today. However, the performance is about a factor four less good than expected because of 
unforeseen instrumental effects.  
 
Of particular interest is that the polarimetric performance is better if the AO performance is less good and vice versa.  
Speckle subtraction by polarimetry suffers mainly by the beam shift effects that are currently under investigation. 
Improvements in the correction or calibration of the beam shift effect will in particular help to push the performance for 
observations taken under very good AO conditions, long wavelengths and good seeing because these observations are 
most affected by the residual speckle pattern. 
 
Using angular differential imaging techniques [31] at the telescope it should be possible to push the polarimetric contrast 
limits towards 1×10-7 which would be reachable from day one.  It is not excluded that improved data reduction based on 
further analysis of the instrument, upgrades of individual components, or more sophisticated observing strategies can 
provide in the near future the goal performance contrast of 10-8 for SPHERE-ZIMPOL. However it seems now too 
optimistic to hope for such a performance already during the first year(s) of operation of the instrument. 
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