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ABSTRACT   

The VLT second generation instrument SPHERE (Spectro-Polarimetric High-contrast Exoplanets Research) was 
commissioned in the Summer of 2014, and offered to the community in the Spring of 2015. SPHERE is a high contrast 
imager that exploits its three scientific channels in order to observe and discover young warm exoplanets in the glare of 
their host stars. The three scientific instrument are: ZIMPOL, a polarization analyzer and imager that works in the visible 
range of wavelength, IRDIS a dual band imager and spectro polarimetric Camera that works in the NIR range up to K 
band, and IFS, an integral field spectrograph working in the YJH band. Very important is the complementarity between 
IRDIS and IFS. The former has a larger Field of view (about 12 arcseconds) while the IFS push its examination very 
close to the central star (FoV ~ 1.7 arcsec). In one year of operational time  a lot of very interesting scientific cases were 
investigated and very nice results were gathered. In this paper we would like to focus the attention on the high quality 
results and performances obtained with the IFS  

Keywords: Instrumentation, Extrasolar Planets, High Contrast Imaging, Integral Field Spectrograph 
 

1. INTRODUCTION  

The search for extrasolar planets is still dominated by radial velocity and transit measuremets. The latter with Kepler 
satellite1 and the foreseen transit missions (CHEOPS2, PLATO3, TESS4) discovered and will discover thousands of new 
worlds. In spite of this, a lot of big efforts have been done in order to direct imaging these low mass companions. In the 
last two – three years some high contrast imagers were commissioned at 8 – 10 m class telescopes. In particular the very 
last two are the Gemini Planet Imager (GPI) and SPHERE. The Gemini Planet Imager saw its first light at the Gemini 
South telescope in November 2013 and achieved H-band Strehl ratios of ~0.9 and 5σ contrasts of 105—106 at separations 
of 0.35-0.75''5. Data analyses of commissioning observations of β Pictoris b8 and HD 95086 b(6,7,8) were published(5,9). 
SPHERE was commissioned in the Summer of 2014 and offered to the community in the Spring 2015. In this paper an 
overview of SPHERE and of the IFS is given together with the description of IFS commissioning and scientific results. 
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2. SPHERE AND IFS OVERVIEW 

SPHERE (see Figure 1) is made of four subsystems: the Common Path Optics and three science channels, a differential 
imaging camera (IRDIS)10, an Integral Field Spectrograph (IFS)11, and a visible imaging polarimeter (ZIMPOL)12. The 
Common Path includes pupil stabilizing fore optics (tip-tilt and derotator), the SAXO13 extreme adaptive optics system 
with a visible wavefront sensor, and NIR coronagraphic devices in order to feed IRDIS and IFS with highly stable 
coronagraphic images.  
The IRDIS science module covers a spectral range from 0.95-2.32 microns with an image scale of 12.25 mas consistent 
with Nyquist sampling at 950 nm. The FOV is 11′′ Å~ 12.5′′, both for direct and dual imaging. Dual band imaging is the 
main mode of IRDIS, providing images in two neighboring spectral channels with < 10 nm rms differential aberrations. 
Two parallel images are projected onto the same 2k Å~ 2k detector with 18-micron square pixels, of which they occupy 
about half the available area. A series of filter couples is defined corresponding to different spectral features in modeled 
exoplanet spectra. The classical imaging mode allows high-resolution coronagraphic imaging of the circumstellar 
environment through broad-, medium-, and narrow-band filters throughout the NIR bands including Ks. In addition to 
these modes, long-slit spectroscopy at resolving powers of 50 and 500 is provided, as well as a dual polarimetric imaging 
mode. A pupil-imaging mode for system diagnosis is also implemented. 
 
 

 
Figure 1: Overview of the inner part of SPHERE. The optical path that feeds the Common path and the three scientific 
instruments is clearly shown. 

 
ZIMPOL is located behind the SPHERE visible coronagraph. Among its main specifications are a bandwidth of 600-900 
nm and an instantaneous field of view of 3′′ x 3′′ with access to a total field of view of 8′′ in diameter by an internal field 
selector. The ZIMPOL optical train contains a common optical path that is split with the aid of a polarizing beamsplitter 
in two optical arms, each with its own detector. The common path contains common components for both arms like 
calibration components, filters, a rotatable half wave plate and a ferroelectric liquid crystal polarization modulator. The 
two arms have the ability to measure simultaneously the two complementary polarization states in the same or in distinct 
filters. The images on both ZIMPOL detectors are Nyquist sampled at 600 nm. The basic ZIMPOL principle for high-
precision polarization measurements includes a fast polarization modulator with a modulation frequency in the kHz 
range, combined with an imaging photometer that demodulates the intensity signal in synchronism with the polarization 
modulation. The polarization modulator and the associated polarizer convert the degree-of-polarization signal into a 
fractional modulation of the intensity signal, which is measured in a demodulating detector system by a differential 
intensity measurement between the two modulator states. Each active pixel measures both the high and low states of the 



 
 

 
 

 
 

intensity modulation and dividing the differential signal by the average signal eliminates essentially all gain changes, 
notably changes of atmospheric transparency or electronic gain drifts. 
IFS explores the stellar neighborhood in order to find planetary spectral features. This quest is conducted searching for 
strong CH4 absorption bands in both the stellar light reflected by gaseous Jupiter-like planets and in thermal emission 
from young-warm planets. Moreover it will be possible to have a first order characterization of the low mass companion 
itself. Additional science topics addressed by SPHERE include the study of protoplanetary discs, brown dwarfs, evolved 
massive stars and Solar System and extragalactic science. The heart of IFS11 is a new kind of lens-based IFU called 
BIGRE14. BIGRE is built as a double face lenselet array in which the second lenslet array allows formation of pseudo-slit 
images corresponding to very small portions of the field, which are then imaged on the detector after being dispersed. 
The array is made by 150 × 150 lenslets with 161.5 µm pitch allowing a FoV of 1.77” × 1.77”. Specifically, BIGRE is 
placed at the interface of the IFS with the Common Path (CP) and it is optically conjugated with the telescope Focal 
Plane, that is re-imaged by an F/# = 316 beam. This allows to sample the diffractive PSF - arising from the AO 
compensation and the Coronagraphic spatial filtering, both working inside the CP optics - at the Nyquist’s limit. 
The purpose of the IFS is thus to realize diffraction limit Integral Field Spectroscopy with the high contrast capabilities 
of the BIGRE device as IFU. To this scope, the whole IFS system, which is downstream the entrance lenslet array only 
re-images and disperses these slits with the highest optical stability and a good optical quality. The optimized IFS optical 
design is a fully dioptric concept design made by several optics located along a straight optical axis. The IFS is projected 
to work at different resolutions in two different wavelength ranges: R~50 in the 0.95 -1.35 µm (z-J mode) and R~30 in 
the wider wavelength range of 0.95 – 1.65 µm (z-J-H mode). The two resolutions are achieved by two different Amici 
prisms while the working wavelength ranges are defined by a combination of band pass, high- and low-pass filters 
mounted inside the dewar (low pass filter) and just in front of the prisms (band pass filter for the z-J mode and high pass 
filter for the z-J-H mode). The spectrograph is not cryogenic so a set of filters and baffles are used to minimize the 
thermal background noise. Most of the unwanted radiation is eliminated by the presence of a cold filter, about 40 mm 
before the detector and by two baffles, a cold absorbing baffle located inside the dewar, and a warm reflecting baffle 
located on the back of the IFS camera. The residual thermal background is mainly due to unavoidable thermal emission 
from the active IFS optical components. 
It is expected that IFS will be mostly used together with IRDIS in the so-called NIRSUR (NIR survey) mode, developed 
for the large survey that will use about  80% of the GTO time. It combines IRDIS dual imaging in H band with imaging 
spectroscopy using the IFS in the Y-J bands. This configuration permits to benefit simultaneously from the optimal 
capacities of both dual imaging over a large field (out to ~5" radius) and spectral imaging in the inner region (out to at 
least 0.7" radius). In particular, it allows to reduce the number of false alarms and to confirm potential detections 
obtained in one channel by data from the other channel. This will be a definite advantage in case of detections very close 
to the limits of the system. Other two observing modes (NIROBS, IFS-H) are also possible. 

 

3. COMMISSIONING TEST AND RESULTS 

 
During commissioning the following test has been performed to characterize the instrument: 

• Photometry and Flux Calibration; 
• Astrometry 
• High Contrast performances Validation 

 

3.1 Photometric Accuracy of faint companions using flux calibration 

SPHERE IRDIFS data are usually normalized using the flux calibration. The latter was used to evaluate photometry for a 
number of faint companions by considering the contrast at 1.25 and 1.65 micron. We called these magnitudes J_IFS and 
H_IFS. The Table 1 summarizes the results from commissioning sky tests we performed and compares them with 
literature values. 
On the whole, there is good agreement. There is one discrepant case (J magnitude for HD1160 B); however, our 
photometry yields J-H=0.47, that is much better in agreement with expectations for such a late M-star than the value of 
J-H=1.18 given in the discovery paper by Nielsen et al.15. Also, the result from the Y-J observation of HR8799d is of 
very poor quality, and should not be considered. Once these cases are eliminated, the standard deviations of the derived 
magnitudes with respect to literature values are 0.06 mag for Y_IFS, and 0.17 mag for H_IFS. 



 
 

 
 

 
 

 
 

Table 1: Results of Photometry of faint companions using flux calibration (see text) 
 

 
 
3.2 Astrometry 

During commissioning various astrometric fields were observed, in both field and pupil stabilized modes16. The 
calibration for IFS data has been obtained by the analysis of the IRDIS data (in particular the H2 images) and using the 
transformation of IFS to IRDIS coordinates provided by the internal distortion grid. The result gives the resulting scale 
for IFS is 7.45± 0.01 mas/pixel. 
 
3.3 High Contrast performances Validation 

In order to obtain a evaluation of the contrast performance of the IFS several deep coronagraphic observations in pupil 
stabilized mode with the Apodized Lyot Coronagraph (ALC) have been obtained. 
 



 
 

 
 

 
 

 
Figure 2: 5-sigma contrast curves from the COM2 Y-J image of HR7581 obtained using PCA-based differential 
imaging. The curves were corrected for cancellation effects using fake planets. 

 
Figure 2 gives the 5-sigma contrast as a function of separation. Results are given for Principal Compenent Analysis 
(PCA)17 done with different number of modes. Cancellation effects are considered using corrections estimated from fake 
planets. The noise model indicates that this observation is calibration limited. The limiting contrast is -6.19 (6.5×10-7) at 
0.5 arcsec. The limiting contrast is almost flat for separation >0.4 arcsec. The contrast depends also by the rotation angle 
of the field during the overall acquisition. This dependence was determined using only fractions of the total exposure for 
two bright objects (HR7581 and Altair). The plot shown on  Error! Reference source not found. gives the contrast as a 
function of time. 
 

 
Figure 3: Trend of the contrast with angle/time (see text) 

 
The same measurements have been performed also with the different coronagraphs that are available for the IFS. In order 
to perform these The bright star alpha Hyi8 (HR591, J=2.30) was observed with different coronagraphs. The figure 
shows the 5-sigma contrast curves without any differential imaging applied for the Y-J case. Results at separation 
smaller than the Inner Working Angle (IWA) of 0.10 arcsec (0.12 arcsec) were not considered for ALC2 (ALC3). As 
expected, best contrast is obtained with APO2 (the smoothest apodizer) and ALC3 (the mask with the largest 
occultation). 4Q performs slightly worse than the apodized Lyot coro’s. For a review of these type of coronagraph see 
Guyon et al.18. 
 



 
 

 
 

 
 

 
Figure 4: Contrast curves  for different coronagraphs available for IFS. 

 
All measurements have been performed also for Y-H mode of IFS and performances in Y-H mode are similar to those 
obtained for the Y-J ones. 
 

 
Figure 5: Same as Figure 2. The target star is ι Sgr. 

 
 

4. SCIENCE WITH IFS 

IFS allowed to obtain a contrast better than 10-6 at a separation of few tenths of arcsec. One example is the contrast plot 
obtained for Sirius displayed in Figure 6. The contrast was obtained applying at the same time both Angular Differential 
Imaging (ADI16) and Spectral Differential Imaging (SDA19,20) exploiting the principal components analysis (PCA17) 
algorithm adapted to the SPHERE IFS case21. 



 
 

 
 

 
 

 
Figure 6 - Contrast plot for Sirius obtained with different number of principal components for the PCA 
 
This contrast allow to find companion even at very small separations from the host star like for the case of HIP 66908 
that is shown in Figure 7 where the companion is clearly visible at a separation of ~0.15 arcsec from the host star. In this 
case the contrast is only ~4 magnitudes in J band so that the companion is in this case a M type star. This is confirmed by 
its low resolution (R~50) spectrum that has been extracted and that is displayed in Figure 8. 
 

 
Figure 7 – Final image for HIP 66908 
 



 
 

 
 

 
 

 
Figure 8 – Spectrum extracted for HIP 66908 
 
To be able to obtain good results for companion with a larger contrast with respect to the host star we need to go at larger 
separations like for the case of HR 8799. This well studied system is composed by 4 substellar companions and two of 
them are well into the small FOV of IFS. It was observed during the commissioning of SPHERE22 and in Figure 9 we 
display the final image obtained. The two innermost planets are visible at the unprecentented S/N of ~20. Moreover, for 
both of them it was possible to obtain very good quality spectra like it is shown in Figure 10 for HR8799d and in Figure 
11 for HR8799e. 
 

 
Figure 9 – Final image of the inner part of the HR 8799 system where the two innermost planets are clearly visible 
 
Both in Figure 10 and in Figure 11 together with the lower resolution spectrum from IFS we inserted the photometric 
points from IRDIS (blue dots) that can allow to enlarge the spectral range. Moreover, some spectra of  known objects are 



 
 

 
 

 
 

inserted in the plot so that a spectral classification is possible trying the spectrum the better fir the extracted one. In this 
way, it has been possible to define that the best fit for both the planet was a L6 spectrum. 

 
Figure 10 – Extracted spectrum for HR8799d 
 

 
Figure 11 – Extracted spectrum for HR8799e 
 
 



 
 

 
 

 
 

5. CONCLUSIONS 

SPHERE and its IFS are in action since 2014 and up to now several interesting results have been obtained. We 
summarized some of them in this article. The main thing is that in so far the instrument is working in a fully compliant 
way with the science requirements stated at the beginning of the project. SPHERE is and will be one of the new 
generation instrumentation that allow the characterization of giant planets and brown dwarfs orbiting young stars 
opening a new frontier in the search and physical characterization of young and warm planets and small mass 
companion. 
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