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ABSTRACT

The MMT adaptive optics system has been in operation for over 2 years.1, 2 Besides being a technological
demonstration, it has achieved remarkable success.3, 4 However, the system is presently limited by a few factors,
one of which is the lack of an optimised controller. In this paper, we review the optimised modal integrator
as introduced in Ref5 and evaluate its potential for MMT-AO. We �nd that it can indeed increase the system
sensitivity by one magnitude but that a careful analysis of wave front sensor data must be performed to remove
artefacts that can severely bias the outcome of the optimization.
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1. INTRODUCTION

Scarcity of bright stellar sources leads to the need of using AO with faint guide stars. In this photon-starved
regime the performance of the AO system degrades rapidly due to the propagation of the photon noise to the
wavefront error tracking loop. As the signal to noise ration (SNR) degrades on the sensor, the AO controller
has to use information that is more and more noisy until the e�ect of the noise dominates the useful wavefront
correction at which point the AO system starts introducing more aberrations than it corrects. Figure 1 shows
typical Strehl ratio achieved versus guide star magnitude.

Figure 1. Strehl ratio v.s. guide star magnitude without modal optimization.

We have implemented the solution proposed by Gendron et al. 1994. This is a solution to delay the collapse
of the performance in order to use AO with faint guide stars. The idea is to tune the bandwidth of the controller
in order not to propagate more noise than signal through the system. This optimization is performed separately
for each mode controlled by the AO. It is a modal optimization.
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2. MODAL OPTIMIZATION

2.1. Framework

We present here a summary of the modal optimization method, developped in Gendron et al. 1994, that we have
chosen to implement. This method has been implemented in the Adonis system (ESO 3.6m telescope, Chile) in
1993, on the PUEO system (Cfht, Hawaii) in 1996, and recently in the NAOS system (ESO, VLT).

Let us consider the block diagram of a traditional AO system on Fig. 2. The block of the forward branch
embeds the controller (integrator + delay) and the deformable mirror (DM). The feed-back branch is made of
the wavefront sensor (WFS) camera and read-out electronics. The goal of the modal optimization is to tune the
controller parameters to minimize the residual wavefront phase error, given certain observation conditions. In
particular, we are going derive the best integrator gain gi for each mirror mode i. To be able to optimize the
behaviour of each mode separately, we make the assumption that the modal base is orthogonal.

Figure 2. Traditional AO block diagram.

Considering each mode separately, we write the modal open-loop transfer function:

hol = hwfs · hsys (1)

And the corresponding (modal) correction transfer function and error rejection transfer function are respec-
tively:

hcor =
1

1 + hol · gi
(2)

hn =
hsys · gi

1 + hol · gi
(3)

Of course, the hcor and hn are functions of the modal gain gi. Assuming a linear plant, we can write:

〈
z′2i

〉
=

∫
Hcor(f, gi) · ‖zi(f)‖2

df +
∫

Hn(f, gi) · ‖mi(f)‖2
df (4)

Where Hcor and Hn are the squared amplitudes of the corresponding transfer functions hcor and hn. ‖zi(f)‖2

and ‖mi(f)‖2 are respectively the PSD of the uncorrected modal amplitude and the modal noise PSD. Note that
the aliasing e�ect due to the spatial sampling of the WFS is not taken into account.

We are seeking to minimize the modal variance independently for each mirror mode. To do this, we must
compute each term of Eq. (4). Hcor and Hn depend on the known dynamic behaviour of the AO system building
blocks. Their model is assumed to be known. zi(f) and mi(f) are the modal spectra of the uncorrected mode i
and the modal noise, respectively. These variables are not directly accessible because this only thing that can be
measured is the noisy modal amplitude ẑi(f). We know however that ‖ẑi(f)‖2 = ‖zi(f)‖2 + ‖mi(f)‖2, because
the noise is decorrelated from the signal.



We use an approximation of Eq. (4) 1st suggested by E. Gendron,5 using only known quantities: The
hypothesis is that the noise and signal are separable in the frequency domain. At low frequencies the signal
(modal amplitude) dominates the noise while the opposite is true at high frequencies. Using the white noise
hypothesis, one can write:

〈
z′2i

〉
=

∫
Hcor(f, gi) ·

(
‖ẑi(f)‖2 − p(i) · σ2

n

)
df + p(i) · σ2

n ·
∫

Hn(f, gi)df (5)

Where p(i) is the noise propagation coe�cient between the noise measured at the WFS and the modal noise
at reconstructor output. σ2

n corresponds to the phase error variance measured from the WFS slopes (the MMT
uses a Shack-Hartmann WFS).

The propagation coe�cients p(i) depend on the reconstructor matrix. They express the way the slope noise
is translated into modal noise, once the slope vector is multiplied by the reconstructor matrix D′. Their value is
equal to the diagonal elements of (Dt · D)−1:

p(i) = (Dt · D)−1
ii (6)

Where D is the interaction matrix, going from the slope space to the modal space. σn is the rms measurement
phase noise in [rad] over each sub-aperture. The value σn used is the average of the slope noise over all sub-
apertures. One can also measure the factor p(i) ·σ2

n by evaluating the modal noise after reconstruction, removing
the need to compute the propagation coe�cients.

2.2. Noise estimation by auto-correlation

There are several ways of computing p(i) · σ2
n. Each one requires extracting the noise from an unknown signal.

1. The noise variance can be measured on the slope signals. σn is the rms measurement phase noise. After
computation of the propagation coe�cients, the modal noise is known.

2. One can measure the term p(i) · σ2
n from the modal amplitudes in the mirror space.

Two ways to estimate the noise have been used: auto-correlation and averaging the high frequency part of the
spectrum. In both cases, the result is better when the SNR is lower. The noise must be estimated on the open-
loop signal. For the autocorrelation method, we assume that the noise is decorrelated from the signal and from
itself. The autocorrelation of the signal is determined by the modal time-frequency spectrum via the Wiener-
Kinchin theorem. One can measure the noise of the autocorrelation function by taking the quadrature di�erence
between the auto-correlation computed at t = 0 and the value of the auto-correlation at t = 0 interpolated from
the samples at t < 0 and t > 0. The second way of measuring the noise variance is the integration of the PSD. The
method work in an ad hoc manner, provided the PSD levels o� clearly beyond a certain frequency. Experience
has shown that satisfactory estimations can be made in our case from the upper 100 frequency samples (245-275
[Hz]).

Other �lters can also be used for this estimation like auto-regressive �lters (see Ref6).

2.3. Implementation

The only signal required for the optimization is the atmospheric turbulence. We are going to reconstruct the
input wavefront from the slope signal measured by the WFS. As mentioned already, this measurement must be
performed in open AO loop. Actually, on the MMT-AO system, it is not possible to work in these conditions
because the WFS will saturate for most of the time. Therefore, on the real system, we measure the residual
slopes ~s(t) in closed-loop, we translate this error into modal error using the reconstructor and add the current
mirror position to have the best estimate of the modal amplitude. The knowledge of the DM transfer function
HDM (s) relieves us from the need to know the DM position. It can be derived from the convolution of ~s(t) and
hDM (t). Because of the time-invariance of hDM (t), we do not consider that inferring the mirror position from
the time-serie of its inputs rather than measuring its position will add an error term to our error budget.



2.3.1. The slope signal

When working in open loop the slope signal is available directly. When in closed-loop the slope signal is estimated
from the residual slopes and the modal position, using the in�uence matrix. Currently the MMT-AO system
has 108 active sub-apertures and the slope signal is a matrix of 216 lines and k columns, k being the number of
time samples.

From the slope signal, we derive the σ2
n term of Eq. (5), which is the average variance per sub-aperture.

Using the noise propagation coe�cents computed using Eq. (6), we can now compute the terms p(i) · σ2
n.

Figure 3 shows the propagations coe�cients of the theoretical reconstructor as a function of the mode number.
It strikingly shows how certain modes are less visible by the WFS than others for equivalent modal power. This
is a well-known fact for SH-based systems. In particular, the SH being sensitive to the local slopes, it responds
better the modes of higher spatial frequencies. Generally, the noise propagates well on the �rst modes, but since
the atmosphere has more power on those modes their SNR will still be better than higher modes where noise
propagation is weaker. Notice there are peaks of noise propagation on certain high order modes. We expect to
have to reduce the feedback on those noisy modes.

Feeding the slope signal into the reconstructor, one obtains the reconstructed wavefront., expressed as a
modal temporal evolution. A Fourier transform yields the term ‖ẑi(f)‖2.

2.3.2. Finding the minimum residual variance

The optimal controller bandwidth is the one that will minimise the residual modal phase variance. Using Eq.
(5), we search a scalar gain gi for which

〈
z2
i

〉
is minimal. The lower bound of g(i) is 0 and its larger bound is

the value that correspond to the stability limit of the system which we de�ne by the phase margin of 45 degrees.
His corresponds for our model to a gain g(i) of 0.47. We have implemented a dichotomic search a the minimum
using a relative gain change < 10% as an output criterion. The Fig. 4 below shows the optimal gains obtained
on a 11th magnitude star. The gains are clipped to the system stability limit we have set.

Figure 3. Propagation coe�cents of the standard MMT-AO reconstructor.

Figure 4. Modal gains obtained on a 12th mag guide star. The gains are clipped to the system stability limit.



3. SIMULATION

We are using a station-temporal simulation of our AO system which we use to quantify the performance of the
modal optimization against a case of "�at gain" controller where all modal gains are set to the same value. The
main parameters of the simulation are de�ned to closely match the MMT-AO:

• Atmosphere: Single frozen turbulence layer at 25m/s. Outer scale 100m, inner scale 9cm (limited to prevent
spatial aliasing by the simulation). The atmosphere is the same for all simulation to remove statistical
e�ects.

• WFS: 12x12 Shack-Hartmann, using quad-cells and 8 e- read-out noise.

• Modal base: �rst 100 Karhunen-Loeve modes.

• Controller: Pure integrator. In the �at gain case, it correspond to the stability limit (45deg phase margin)
and is equal to 0.47. Sampling time is 1.8 ms.

• The sky brightness is 18 mag/(square ").

• Simulated duration: 3s per run.

The performance criterion is the Strehl ratio. Figure 5 shows the Strehl ratio versus guide star magnitude in
the �at gain case and with modal optimization. As soon as the performance starts to be limited by photon noise,
modal optimization can improve performance. Indeed, the optimization criterion will force the noisy modes
(those with a big p(i)) to have a low noise integral, which means a low gain in the higher part of the spectrum.
In reality, the gain of all modes will be reduced because they become all noisy. Modal optimization allows to
�nd the most suitable gain for each of them.

Figure 5. Strehl ration v.s. magnitude with (o) and without (x) modal optimization. The �at gain is set to 0.47, which
corresponds to a 45 degree phase margin.

4. MEASUREMENTS ON THE SKY

In the preceding section the system has been optimized using open loop simulations. The actual MMT system
saturates under these conditions and the optimization algorithms must be extended to be able to use data
from the (un-optimized) AO working in closed-loop. This is a �rst step towards on-line implementation of this
optimization.



4.1. Atmospheric Input turbulence

We have used a set of data measured on the sky during MMT-AO runs. We have computed the atmospheric
turbulence from the closed-loop data as described in Sect. 2.3. We have chosen this method for the convenience
of not having to synchronise 2 data sets (slope error and DM position).

The slope vector ~s measured by the WFS yields the instantaneous modal error. From the AO loop model we
know the transfer function between this error and the mirror position and therefore we can derive the position
from the error. Since we have an integrator in the loop, the position is only known to a constant but this does
not matter since we assume 0-average modes. Even with the �at gain g(i) known, the model has a parameter
that must be estimated and this is the gain of the wavefront sensor. For a Sack-Hartmann working in quad-cell
mode, this gain depends on the seeing.7, 8 A real-time estimation of this gain will be designed for the MMT-AO.

4.2. Sample duration

We have also estimated the number of time sampled required to have an e�ective optimization. This number will
in�uence the output of the optimization in several ways: A longer sample will reduce the statistical variation of
the modal spectrum, will increase the spectral resolution and will also reduce the noise on the auto-correlation
function used to estimate the noise. Rather than trying to derive an analytical expression for the minimal number
of samples, we have observed the evolution of the Strehl ratio with respect to the sample duration used for modal
optimization (see Fig. 6).

Figure 6. This �gure shows the Strehl ratio obtained after a modal optimization performed from an open-loop time
sequence of the duration indicated on the abscissa. From this �gure, it is apparent that an observation time beyond 2.5s
is not required in our case. (we anticipate that lower wind speeds will require longer integration times.).

5. OPTIMAL GAINS DERIVED FROM MMT DATA SETS

We investigate the modal optimization from one data set acquired in closed-loop on a 5.4 magnitude guide
star. At this light level, the signal is essentially noiseless. Knowing the noise propagation coe�cient, we are
progressively adding more Poisson noise to it and observe the evolution of optimum gains. Figure 7 illustrate the
e�ect of adding more noise. The solid curve is turbulence spectrum measured on the 5.4 mag guide-star, while
the dotted line is the same spectrum after noise has been added on the slopes and propagated to the mode. Note
that the SNR is not calibrated in equivalent guide star magnitude.

5.1. Results

5.1.1. Important parameters

Figure 8 shows the evolution of optimized modal gains in noisier and noisier conditions.

The optimal loop gain in�uenced mostly by 3 parameters :

• The modal temporal spectrum

• The transfer function overshoot



(a) . (b) .

Figure 7. E�ect of adding white noise Poisson noise on the WFS signal. Mode #1 (quasi-tip) of a 56-modes MMT modal
base, based on mirror eigen modes.

(a) . (b) . (c) .

(d) . (e) . (f) .

(g) . (h) . (i) .

Figure 8. Evolution of optimal gain with increasing (by arti�cial noise added) GS magnitude. (a) using the original
5.4 mag. GS and going up to (i) approximatively 9 mag GS. Here, the stability limit has moved up to 0.6 because the
temporal model is a little bit di�erent from the real data from the MMT.

• The noise level



Let us analyze quantitatively these parameters to understand the modal gains shown in Fig. 8. First let us
note that to �rst order the DM dynamics is mode-independent, and only the temporal spectrum and the noise
level are di�erent between the modes.

In the case of a bright GS, the noise becomes negligible and Eq. (5) simpli�es to:

〈
z′2i

〉
=

∫
Hcor(f, gi) · ‖ẑi(f)‖2

df (7)

Where modes di�er only by their modal spectra. When noise is added, the right part of Eq. (5) starts
weighting in the total modal variance. We are using the MMT-AO 56 modes base where modes are ordered by
decreasing singular value as shown in Fig. 9. Modes #1 and #2 are almost equal to the Zernike modes tip and
tilt. The noise propagation coe�cients are therefore monotonically decreasing too. From this perspective only,
one would expect the modal gain to increase with the mode number.

Figure 9. In the MMT 56 modes case, the modes are ordered by decreasing singular value

5.1.2. E�ect of Spectral power distribution

Figure 10 shows the frequency distribution of mode #1 (quasi-tip), where 2 peaks are clearly present:

1. One peak at 20 Hz due to mechanical vibrations on the secondary mirror support hub.7 These rotary
oscillations of the hub produce essentially tip and tilt on the WFS. One solution being implemented to
remove this e�ect is to correct it in open loop, using a set of accelerometers as sensors and adding their
tip-tilt measurement to the AO controller position output.

2. One peak at 49 Hz which origin is not yet identi�ed. Its bandwidth is quite narrow (<0.5 Hz) and it is
present on modes (#1, #2 and #4). Some system considerations lead to thinking that it is not linked
to mechanical vibrations and might of electrical origin. We are going to consider it as "added" noise not
linked to the atmospheric turbulence.

Other modes also contain spurious peaks of power. Some around 30 Hz. Since they come and go, it is di�cult
to identify their origin, And we do not have enough data sets to make statistically signi�cant conclusions.
However, we believe that these peaks do not correspond to atmospheric turbulence. We must nonetheless
determine their e�ect on the �nal image quality. For instance, the 20 Hz certainly degrades the image (we where
able to take it out with stack and add) while the 49 Hz likely degrades only the measurement.

Figure 11 compares the frequency distribution of modes #3 and #30 in noise conditions similar to Fig. 8(d).
In the 20-30 Hz band, mode #30 has more power than mode #3. The band is located before the overshoot of
the rejection transfer function, therefore increasing the gain is going to reduce the power in this band. However,
this mode also has more power in the spectral band where the rejection transfer function overshoots and this is
going to drive the optimal gain lower. Our algorithm is going to look for the optimal considering the complete
spectrum. (In this particular case the gain is larger for mode #30 than for mode #3).

As the Fig. 8, Fig. 12 shows the evolution of optimized modal gains in noisier and noisier conditions. This
second data set use an original 8.75 mag GS.



Figure 10. Frequency distribution of mode #1 with the 5.4 mag GS data set.

Figure 11. Frequency distribution of the modes #3 (blue stars) and #30 (red circles) with the 5.4 mag GS data set.

5.1.3. Behavior of the last mode

Figures 8 and 12 show that the highest mode has a particular behavior: The optimal gain for this mode tends
to stay substantially higher than the one of the other high order modes until it drops to 0 as the SNR collapses.
Figure 13 compares the frequency distribution of mode #55 and that of mode #54 for noise conditions corre-
sponding to Fig. 8(g) (Fig. 13(a)) and 8(h) (Fig. 13(b)) respectively. Notice that the vertical scale is di�erent
between �gure 14a and 14b. In atmospheric terms mode 55 has more power in the 8-30 Hz band but when the
GS is dim enough, this e�ect is masked by the noise.

5.1.4. Behavior of the �rst mode

In the second data set (Fig. 12) the mode #1 also exhibits a particular behavior. In our modal base modes 1
and 2 are very close to the Zernike tip and tilt modes, therefore their behavior is very close. In this set however,
their spectra are strikingly di�erent as shown in Fig. 14. where the frequency distribution of these 2 modes are
compared in conditions corresponding the ones in Fig. 12(g). Mode number one shows the 20 Hz peak already
mentioned corresponding to the secondary hub vibration. During this acquisition, the vibration was a�ecting the
tip axis but not the tilt axis. Since the oscillation frequency is within the control bandwidth, the optimization
algorithm maximizes the gain to minimize this component.



(a) . (b) . (c) .
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Figure 12. Evolution of optimal gain with increasing (by arti�cial noise added) GS magnitude. (a) using the original
8.75 mag. GS and going up to (i) approximatively 12.5 mag GS.

(a) . (b) .

Figure 13. This is the comparison between mode #54 (blue stars) and #55 (red circles). Sub-�g (a) in the same
conditions than Fig. 8(g) and (b) the same than Fig. 8(h).

5.1.5. Pre-processing

After examining the pattern of optimal gains, and the origin of certain speci�c patterns we conclude that pre-
processing the data is required. Ideally, this processing should be embedded within the modal optimization



Figure 14. Frequency distribution of mode quasi-tip #1 (blue stars) and quasi-tilt#2 (red circles).

environnement. It cannot be based only on analytical reasoning but must include the di�use but deep knowledge
of the system we have used to support the interpretation we have made in this chapter.

Other authors have made similar conclusions. Notably Gendron,9 talks about the need of "incident detection"
and of pre-processing the data.

For the optimization to work e�ectively, one must identify possible perturbations, track their origin and
evaluate their consequences. If a perturbation does a�ect the system and degrades the science image, it must be
included in the optimization of the residual phase variance. If on the other hand it only a�ects the measurement
it must be eliminated before it can in�uence the output of the optimization.

6. CONCLUSION

The our case, modal optimization can only been considered when using closed loop slope data because of the WFS
non-linearities. This is not a limitation since using close-loop data is the desired method when on-line modal
optimization is the ultimate target. The model of our system has been reviewed to best match the elements of
the AO system. Using this model, we are able to derive the actual position of the mirror and the atmospheric
turbulence. (In this we are also helped by the fact that the adaptive secondary technology uses local position
control and provides an accurate position measurment of each actuator several times per WFS integration).

Since the optimization is only valid for the current statistics of the perturbation, the optimization must be
performed and applied rapidly, before the atmospheric statistics change. Steps have been made to shorten the
processing time, including determining shortest integration times and implementing a fast dichotomic algorithm.

We were expecting to see the optimization converge towards a gain v.s. mode number curve that was generally
monotonic. This behavior is not generally veri�ed using data taken on the sky. We were able to understand the
pattern of modal gains obtained after optimization and were able to link some odd behaviors to measurement
artifacts and others to telescope vibrations than must be corrected for even if they have nothing to do with
atmospheric turbulence. Pre-processing of the WFS data to identify and possibly eliminate artifacts must be
implemented as an integral part of the optimization.

Presently, in the MMT-AO case, the modal optimization is not routinely avaiable. The output of the study
presented in this paper is a toolbox tailored to simplify as much as possible the optimization. It generates a
vector of optimal gains o� a regular laptop PC running MATLAB, using the time serie of slope vectors as an
input. However, the results are encouraging enough and work in being done to implement the algorithms in the
real-time AO software.
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