antaress.ANTARESS_grids.ANTARESS_star_grid module#

calc_RVrot(x_st_sky, y_st, istar_rad, veq, alpha_rot, beta_rot)[source]#

Stellar rotational rv

Calculates radial velocity of stellar surface element from rotation (in km/s). The absolute and radial velocity depend on stellar latitude in presence of differential rotation.

\[\begin{split}v &= \Omega R_\mathrm{\star} \\ &= \Omega_\mathrm{eq} (1-\alpha_\mathrm{rot} y_\mathrm{lat}^2 - \beta_\mathrm{rot} y_\mathrm{lat}^4) R_\mathrm{\star} \\ &= v_\mathrm{eq} (1-\alpha_\mathrm{rot} y_\mathrm{lat}^2 - \beta_\mathrm{rot} y_\mathrm{lat}^4)\end{split}\]

The velocity vector in the star frame is defined as

\[\begin{split}v_\mathrm{x,star} &= v \cos(\Phi) \\ v_\mathrm{y,star} &= -v \sin(\Phi) \\ v_\mathrm{z,star} &= 0\end{split}\]

Where \(\Phi\) is the angle between the LOS z and the surface element in the zx plane. The velocity vector in the inclined star frame is then

\[\begin{split}v_\mathrm{x,sky star} &= v \cos(\Phi) \\ v_\mathrm{y,sky star} &= -v \sin(\Phi) cos(i_\star) \\ v_\mathrm{z,sky star} &= -v \sin(\Phi) sin(i_\star)\end{split}\]

And the radial velocity along the \(z_\mathrm{sky star}\) axis, defined as negative toward the observer, is then

\[\begin{split}rv &= - v_\mathrm{z,sky star} \\ &= v \sin(\Phi) sin(i_\star) \\ &= v x_\mathrm{norm} sin(i_\star) \\ &= x_\mathrm{norm} v_\mathrm{eq} sin(i_\star) (1-\alpha_\mathrm{rot} y_\mathrm{lat}^2 - \beta_\mathrm{rot} y_\mathrm{lat}^4)\end{split}\]
Parameters:

TBD

Returns:

TBD

calc_CB_RV(ld_coeff, LD_mod, c1_CB, c2_CB, c3_CB, star_params)[source]#

Stellar convective blueshift

Calculates radial velocity of stellar surface element from convective blueshift.

Parameters:

TBD

Returns:

TBD

calc_GD(x_grid_star, y_grid_star, z_grid_star, star_params_eff, gd_band, x_st_sky_grid, y_st_sky_grid)[source]#

Gravity-darkening intensity

Calculates blackbody emission with gravity-darkening, using the formalism from Barnes+2009. It accounts from gravity-darkening through temperature variation and local blackbody emission.

Parameters:
  • TBD

  • star_params_eff (dict) – dictionary containing nominal or variable (overwritten from fit routines) stellar properties

Returns:

TBD

get_LD_coeff(transit_prop, iband)[source]#

Limb-Darkening coefficients

Store input limb-darkening coefficients in common structure [LD_u1,LD_u2,LD_u3,LD_u4].

Parameters:
  • transit_prop (dict) – dictionary containing the planet/active region limb-darkening properties.

  • iband (int) – index of the band considered.

Returns:

ld_coeff (list) – formatted list of the limb-darkening coefficients used.

calc_LD(LD_mod, mu, ld_coeff)[source]#

Limb-Darkening intensity

Calculates limb-Darkening value at a given \(\mu\) (from 1 at stellar center to 0 at the limb).

Parameters:

TBD

Returns:

TBD

calc_Isurf_grid(iband_list, ngrid_star, system_prop, coord_grid, star_params_eff, Ssub_Sstar, Istar_norm=1.0, region='star', Ssub_Sstar_ref=None)[source]#

Stellar intensity grid.

Calculates flux and intensity values over the stellar grid, from various contributions.

Parameters:

TBD

Returns:

TBD

calc_st_sky(coord_grid, star_params)[source]#

Sky-projected stellar grid.

Calculates coordinates of stellar cells in the sky-projected star rest frame.

Parameters:

TBD

Returns:

TBD

model_star(mode, grid_dic, grid_type, system_prop_in, nsub_Dstar, star_params_eff, var_stargrid_bulk, var_stargrid_I)[source]#

Model stellar grid

Defines coordinates and intensity values over the stellar grid.

Parameters:

TBD

Returns:

TBD

up_model_star(args, param_in)[source]#

Update stellar grid

Update coordinates and intensity values over the stellar grid. This function is called when stellar properties differ from the nominal ones.

Parameters:

TBD

Returns:

TBD